Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-04T04:50:13.224Z Has data issue: false hasContentIssue false

Application of STEM characterization for investigating radiation effects in BCC Fe-based alloys

Published online by Cambridge University Press:  20 April 2015

Chad M. Parish
Affiliation:
Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, Tennessee 37831, USA
Kevin G. Field
Affiliation:
Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, Tennessee 37831, USA
Janelle P. Wharry*
Affiliation:
Boise State University, Department of Materials Science & Engineering, Boise, ID 83725, USA
*
a)Address all correspondence to this author. e-mail: janellewharry@boisestate.edu
Get access

Abstract

This paper provides an overview of advanced scanning transmission electron microscopy (STEM) techniques used for characterization of irradiated BCC Fe-based alloys. Advanced STEM methods provide the high-resolution imaging and chemical analysis necessary to understand the irradiation response of BCC Fe-based alloys. The use of STEM with energy dispersive x-ray spectroscopy (EDX) for measurement of radiation-induced segregation (RIS) is described, with an illustrated example of RIS in proton- and self-ion irradiated T91. Aberration-corrected STEM-EDX for nanocluster/nanoparticle imaging and chemical analysis is also discussed, and examples are provided from ion-irradiated oxide dispersion strengthened (ODS) alloys. Finally, STEM techniques for void, cavity, and dislocation loop imaging are described, with examples from various BCC Fe-based alloys.

Type
Reviews
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

Previously at Pacific Northwest National Laboratory, Richland, Washington 99354, USA

Contributing Editor: Djamel Kaoumi

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Zinkle, S.J. and Snead, L.L.: Designing radiation resistance in materials for fusion energy. Annu. Rev. Mater. Res. 44(1), 241267 (2014).Google Scholar
Klueh, R.L. and Harries, D.R.: High-Chromium Ferritic and Martensitic Steels for Nuclear Applications (ASTM, 2001).CrossRefGoogle Scholar
Critical Issues Report and Roadmap for the Advanced Radiation-Resistant Materials Program, Electric Power Research Institute Report 1026482, West Conshohocken, PA, 2012.Google Scholar
Zinkle, S.J. and Busby, J.T.: Structural materials for fission and fusion energy. Mater. Today 12, 1219 (2009).CrossRefGoogle Scholar
Gupta, G., Jiao, Z., Ham, A.N., Busby, J.T., and Was, G.S.: Microstructural evolution of proton irradiated T91. J. Nucl. Mater. 351(1–3), 162173 (2006).CrossRefGoogle Scholar
Bhattacharya, A., Meslin, E., Henry, J., Pareige, C., Decamps, B., Genevois, C., Brimbal, D., and Barbu, A.: Chromium enrichment on the habit plane of dislocation loops in ion-irradiated high-purity Fe–Cr alloys. Acta Mater. 78, 394403 (2014).CrossRefGoogle Scholar
Field, K.G., Barnard, L.M., Parish, C.M., Busby, J.T., Morgan, D., and Allen, T.R.: Dependence on grain boundary structure of radiation induced segregation in a 9 wt.% Cr model ferritic/martensitic steel. J. Nucl. Mater. 435, 172180 (2013).CrossRefGoogle Scholar
Wharry, J.P., Jiao, Z., Shankar, V., Busby, J.T., and Was, G.S.: Radiation-induced segregation and phase stability in ferritic–martensitic alloy T91. J. Nucl. Mater. 417(1–3), 140144 (2011).CrossRefGoogle Scholar
Wharry, J.P. and Was, G.S.: A systematic study of radiation-induced segregation in ferritic-martensitic alloys. J. Nucl. Mater. 442, 716 (2013).CrossRefGoogle Scholar
Michael, J.R., Plimpton, S.J., and Romig, A.D.: Parallel simulation of electron-solid interactions—A rapid aid for electron-microscope data interpretation. Ultramicroscopy 51(1–4), 160167 (1993).CrossRefGoogle Scholar
Michael, J.R., Williams, D.B., Klein, C.F., and Ayer, R.: The measurement and calculation of X-ray spatial resolution obtained in the analytical electron microscope. J. Microsc. 160(1), 4153 (1990).Google Scholar
Plimpton, S.J., Michael, J.R., and Romig, A.D.: Parallel simulation of electron-solid interaction for electron-microscopy modeling. J. Supercomput. 6(2), 139151 (1992).CrossRefGoogle Scholar
Williams, D.B. and Carter, B.C.: Transmission Electron Microscopy (Springer, New York, NY, 2009).CrossRefGoogle Scholar
Field, K.G., Miller, B.D., Chichester, H.J.M., Sridharan, K., and Allen, T.R.: Relationship between lath boundary structure and radiation induced segregation in a neutron irradiated 9wt.% Cr model ferritic/martensitic steel. J. Nucl. Mater. 445, 143148 (2014).CrossRefGoogle Scholar
Penisten Wharry, J.: The mechanism of radiation-induced segregation in ferritic-martensitic steels, University of Michigan, 2012.Google Scholar
Watanabe, M., Ackland, D.W., Burrows, A., Kiely, C.J., Williams, D.B., Krivanek, O.L., Dellby, N., Murfitt, M.F., and Szilagyi, Z.: Improvements in the x-ray analytical capabilities of a scanning transmission electron microscope by spherical-aberration correction. Microsc. Microanal. 12(6), 515526 (2006).Google Scholar
Cliff, G. and Lorimer, G.W.: Quantitative-analysis of thin specimens. J. Microsc. 103, 203207 (1975).CrossRefGoogle Scholar
Carter, R.D., Damcott, D.L., Atzmon, M., Was, G.S., Bruemmer, S.M., and Kenik, E.A.: Quantitative analysis of radiation-induced grain-boundary segregation measurements. J. Nucl. Mater. 211, 7084 (1994).CrossRefGoogle Scholar
Bachhav, M., Yao, L., Odette, G.R., and Marquis, E.A.: Microstructural changes in a neutron-irradiated Fe–6 at.%Cr alloy. J. Nucl. Mater. 453, 334339 (2014).CrossRefGoogle Scholar
Bachhav, M., Odette, G.R., and Marquis, E.A.: Microstructural changes in a neutron-irradiated Fe-15 at.%Cr alloy. J. Nucl. Mater. 454, 381386 (2014).Google Scholar
Hu, R., Smith, G.D.W., and Marquis, E.A.: Effect of grain boundary orientation on radiation-induced segregation in a Fe-15.2 at.% Cr alloy. Acta Mater. 61, 34903498 (2013).Google Scholar
Marquis, E.A., Hu, R., and Rousseau, T.: A systematic approach for the study of radiation-induced segregation/depletion at grain boundaries in steels. J. Nucl. Mater. 413(1), 14 (2011).CrossRefGoogle Scholar
Marquis, E.A., Lozano-Perez, S., and De Castro, V.: Effects of heavy-ion irradiation on the grain boundary chemistry of an oxide-dispersion strengthened Fe–12wt.% Cr alloy. J. Nucl. Mater. 417, 257261 (2011).CrossRefGoogle Scholar
Parish, C.M. and Miller, M.K.: Aberration-corrected x-ray spectrum imaging and Fresnel contrast to differentiate nanoclusters and cavities in helium-irradiated alloy 14YWT. Microsc. Microanal. 20(2), 613626 (2014).Google Scholar
Haider, M., Hartel, P., Muller, H., Uhlemann, S., and Zach, J.: Current and future aberration correctors for the improvement of resolution in electron microscopy. Philos. Trans. R. Soc., A 367(1903), 36653682 (2009).CrossRefGoogle ScholarPubMed
Dahmen, U., Erni, R., Radmilovic, V., Kisielowski, C., Rossell, M.D., and Denes, P.: Background, status and future of the transmission electron aberration-corrected microscope project. Philos. Trans. R. Soc., A 367(1903), 37953808 (2009).CrossRefGoogle ScholarPubMed
Pennycook, S.J., Chisholm, M.F., Lupini, A.R., Varela, M., Borisevich, A.Y., Oxley, M.P., Luo, W.D., van Benthem, K., Oh, S.H., Sales, D.L., Molina, S.I., Garcia-Barriocanal, J., Leon, C., Santamaria, J., Rashkeev, S.N., and Pantelides, S.T.: Aberration-corrected scanning transmission electron microscopy: From atomic imaging and analysis to solving energy problems. Philos. Trans. R. Soc., A 367(1903), 37093733 (2009).CrossRefGoogle ScholarPubMed
Kotula, P.G., Klenov, D.O., and von Harrach, H.S.: Challenges to quantitative multivariate statistical analysis of atomic-resolution x-Ray spectral. Microsc. Microanal. 18(4), 691698 (2012).CrossRefGoogle Scholar
Parish, C.M., White, R.M., LeBeau, J.M., and Miller, M.K.: Response of nanostructured ferritic alloys to high-dose heavy ion irradiation. J. Nucl. Mater. 445(1–3), 251260 (2014).CrossRefGoogle Scholar
Chu, M.W., Liou, S.C., Chang, C.P., Choa, F.S., and Chen, C.H.: Emergent chemical mapping at atomic-column resolution by energy-dispersive x-ray spectroscopy in an aberration-corrected electron microscope. Phys. Rev. Lett. 104(19), 196101 (2010).CrossRefGoogle Scholar
Ringnalda, J., Genc, A., and Kovarik, L.: The effect of probe correctors on the analytical results of non-ideal samples. Microsc. Microanal. 20(Suppl. S3), 566567 (2014).Google Scholar
Schäublin, R.: Nanometric crystal defects in transmission electron microscopy. Microsc. Res. Tech. 69(5), 305316 (2006).Google Scholar
Newbury, D.E.: Electron-excited energy dispersive x-ray spectrometry at high speed and at high resolution: Silicon drift detectors and microcalorimeters. Microsc. Microanal. 12(6), 527537 (2006).Google Scholar
Newbury, D.E.: The revolution in energy dispersive x-ray spectrometry: spectrum imaging at output count rates above 1 MHz with the silicon drift detector on a scanning electron microscope. Spectroscopy 24(7), 32 (2009).Google Scholar
Klenov, D., Freitag, B., von Harrach, H.S., D’Alfonso, A.J., and Allen, L.J.: Chemical mapping at the atomic level using energy dispersive x-ray spectroscopy. Microsc. Microanal. 17(Suppl. 2), 598599 (2011).CrossRefGoogle Scholar
Schlossmacher, P., Klenov, D.O., Freitag, B., and von Harrach, H.S.: Enhanced detection sensitivity with a new windowless XEDS system for AEM based on silicon drift detector technology. Microsc. Today 18, 1420 (2010).CrossRefGoogle Scholar
von Harrach, H.S., Dona, P., Freitag, B., Soltau, H., Niculae, A., and Rohde, M.: An integrated silicon drift detector system for FEI Schottky field emission transmission electron microscopes. Microsc. Microanal. 16(Suppl. 2), 208209 (2010).Google Scholar
Jeanguillaume, C. and Colliex, C.: Spectrum image: The next step in EELS digital acquisition and processing. Ultramicroscopy 28(1–4), 252257 (1989).CrossRefGoogle Scholar
Kotula, P.G., Keenan, M.R., and Michael, J.R.: Automated analysis of SEM x-ray spectral images: A powerful new microanalysis tool. Microsc. Microanal. 9(1), 117 (2003).Google Scholar
Parish, C.M.: Multivariate statistics applications in scanning transmission electron microscopy x-ray spectrum imaging. In Advances in Imaging and Electron Physics, Vol. 168, Hawkes, P.W. ed.; 2011; pp. 249295.Google Scholar
Keenan, M.R.: Multivariate analysis of spectral images composed of count data. In Techniques and Applications of Hyperspectral Image Analysis, Grahn, H.F. and Geladi, P. eds.; John Wiley & Sons: Chichester, 2007; pp. 89126.CrossRefGoogle Scholar
Keenan, M.R. and Kotula, P.G.: Accounting for Poisson noise in the multivariate analysis of ToF-SIMS spectrum images. Surf. Interface Anal. 36(3), 203212 (2004).CrossRefGoogle Scholar
Keenan, M.R. and Kotula, P.G.: Optimal scaling of TOF-SIMS spectrum-images prior to multivariate statistical analysis. Appl. Surf. Sci. 231232, 240244 (2004).Google Scholar
Kaiser, H.F.: The varimax criterion for analytic rotation in factor analysis. Psychometrika 23, 187200 (1958).Google Scholar
Van Benthem, M.H. and Keenan, M.R.: Fast algorithm for the solution of large-scale non-negativity-constrained least squares problems. J. Chemom. 18(10), 441450 (2004).Google Scholar
Burke, M.G., Watanabe, M., Williams, D.B., and Hyde, J.M.: Quantitative characterization of nanoprecipitates in irradiated low-alloy steels: Advances in the application of FEG-STEM quantitative microanalysis to real materials. J. Mater. Sci. 41(14), 45124522 (2006).CrossRefGoogle Scholar
Gorzkowski, E.P., Watanabe, M., Chan, H.M., and Harmer, M.P.: Effect of liquid phase chemistry on single-crystal growth in PMN-35PT. J. Am. Ceram. Soc. 89(7), 22862294 (2006).Google Scholar
Herzing, A.A., Watanabe, M., Edwards, J.K., Conte, M., Tang, Z.R., Hutchings, G.J., and Kiely, C.J.: Energy dispersive x-ray spectroscopy of bimetallic nanoparticles in an aberration corrected scanning transmission electron microscope. Faraday Discuss. 138, 337351 (2008).CrossRefGoogle Scholar
Parish, C.M., Brennecka, G.L., Tuttle, B.A., and Brewer, L.N.: Quantitative x-ray spectrum imaging of lead lanthanum zirconate titanate PLZT thin-films. J. Am. Ceram. Soc. 91(11), 36903697 (2008).Google Scholar
Certain, A.G., Field, K.G., Allen, T.R., Miller, M.K., Bentley, J., and Busby, J.T.: Response of nanoclusters in a 9Cr ODS steel to 1 dpa, 525°C proton irradiation. J. Nucl. Mater. 407, 29 (2010).Google Scholar
Parish, C.M., Edmondson, P.D., Zhang, Y., and Miller, M.K.: Direct observation of ion-irradiation-induced chemical mixing. J. Nucl. Mater. 418, 106109 (2011).Google Scholar
Unifantowicz, P., Schaublin, R., Hebert, C., Plocinski, T., Lucas, G., and Baluc, N.: Statistical analysis of oxide particles in ODS ferritic steel using advanced electron microscopy. J. Nucl. Mater. 422, 131136 (2012).Google Scholar
Keenan, M.R.: Exploiting spatial-domain simplicity in spectral image analysis. Surf. Interface Anal. 41, 7987 (2009).Google Scholar
Smentkowski, V.S., Ostrowski, S.G., and Keenan, M.R.: A comparison of multivariate statistical analysis protocols for ToF-SIMS spectral images. Surf. Interface Anal. 41, 8896 (2009).CrossRefGoogle Scholar
Tauler, R., Smilde, A., and Kowalski, B.: Selectivity, local rank, three-way data analysis and ambiguity in multivariate curve resolution. J. Chemom. 9(1), 3158 (1995).Google Scholar
Vosough, M., Mason, C., Tauler, R., Jalali-Heravi, M., and Maeder, M.: On rotational ambiguity in model-free analyses of multivariate data. J. Chemom. 20(6–7), 302310 (2006).Google Scholar
Dai, Y., Odette, G.R., and Yamamoto, T.: 1.06-The effects of helium in irradiated structural alloys. In Comprehensive Nuclear Materials, Konings, R.J.M. ed.; Elsevier: Oxford, 2012; pp. 141193.Google Scholar
Zinkle, S.J. and Ghoniem, N.M.: Operating temperature windows for fusion reactor structural materials. Fusion Eng. Des. 5152, 5571 (2000).Google Scholar
Odette, G.R., Alinger, M.J., and Wirth, B.D.: Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 38, 471503 (2008).CrossRefGoogle Scholar
Odette, G.R. and Hoelzer, D.T.: Irradiation-tolerant nanostructured ferritic alloys: Transforming helium from a liability to an asset. JOM 62(9), 8492 (2010).CrossRefGoogle Scholar
Tan, L., Katoh, Y., and Snead, L.L.: Stability of the strengthening nanoprecipitates in reduced activation ferritic steels under Fe2+ ion irradiation. J. Nucl. Mater. 445(1–3), 104110 (2014).Google Scholar
Donnelly, S.E.: The density and pressure of helium bubbles in implanted metals: A critical review. Radiat. Eff. 90, 147 (1985).Google Scholar
Jenkins, M.L.: Characterization of radiation-damage microstructures by TEM. J. Nucl. Mater. 216, 124156 (1994).Google Scholar
Jenkins, M.L. and Kirk, M.A.: Characterization of Radiation Damage by Transmission Electron Microscopy (Institute of Physics, Bristol, 2001).CrossRefGoogle Scholar
Ruedl, E., Gautsch, O., and Staroste, E.: Transmission electron-microscopy of He-bubbles in aluminum. J. Nucl. Mater. 62(1), 6372 (1976).CrossRefGoogle Scholar
Stobbs, W.M.: Electron microscopical techniques for the observation of cavities. J. Microsc. 116, 313 (1979).Google Scholar
Fukushima, K., Kawakatsu, H., and Fukami, A.: Fresnel fringes in electron microscope images. J. Phys. D: Appl. Phys. 7(2), 257266 (1974).Google Scholar
Loretto, M.H. and Smallman, R.E.: Defect Analysis in Electron Microscopy (Halsted, London, 1975).Google Scholar
Yao, B., Edwards, D.J., Kurtz, R.J., Odette, G.R., and Yamamoto, T.: Multislice simulation of transmission electron microscopy imaging of helium bubbles in Fe. J. Electron Microsc. 61(6), 393400 (2012).Google Scholar
Brandes, M.C., Kovarik, L., Miller, M.K., and Mills, M.J.: Morphology, structure, and chemistry of nanoclusters in a mechanically alloyed nanostructured ferritic steel. J. Mater. Sci. 47, 39133923 (2012).CrossRefGoogle Scholar
Krumeich, F., Müller, E., and Wepf, R.A.: Phase-contrast imaging in aberration-corrected scanning transmission electron microscopy. Micron 49, 114 (2013).Google Scholar
Miller, M.K., Longstreth-Spoor, L., and Kelton, K.F.: Detecting density variations and nanovoids. Ultramicroscopy 111, 469472 (2011).Google Scholar
Li, Q., Parish, C.M., Powers, K.A., and Miller, M.K.: Helium solubility and bubble formation in a nanostructured ferritic alloy. J. Nucl. Mater. 445, 165174 (2014).CrossRefGoogle Scholar
Edmondson, P.D., Parish, C.M., Zhang, Y., Hallén, A., and Miller, M.K.: Helium bubble distributions in a nanostructured ferritic alloy. J. Nucl. Mater. 434(1–3), 210216 (2013).Google Scholar
Yao, B., Edwards, D.J., and Kurtz, R.J.: TEM characterization of dislocation loops in irradiated bcc Fe-based steels. J. Nucl. Mater. 434(1–3), 402410 (2013).Google Scholar
Porollo, S.I., Dvoriashin, A.M., Vorobyev, A.N., and Konobeev, Y.V.: The microstructure and tensile properties of Fe-Cr alloys after neutron irradiation at 400°C to 5.5-7.1 dpa. J. Nucl. Mater. 256, 247253 (1998).Google Scholar
Chen, J., Jung, P., Hoffelner, W., and Ullmaier, H.: Dislocation loops and bubbles in oxide dispersion strengthened ferritic steel after helium implantation under stress. Acta Mater. 56, 250258 (2008).Google Scholar
Dudarev, S.L., Bullough, R.R., and Derlet, P.M.: Effect of the α-γ phase transition on the stability of dislocation loops in BCC iron. Phys. Rev. Lett. 100, 135503 (2008).Google Scholar
Fitzgerald, S.P. and Yao, Z.: Shape of prismatic dislocation loops in anisotropic α-Fe. Philos. Mag. Lett. 89, 581588 (2009).CrossRefGoogle Scholar
Prokhodtseva, A., Decamps, B., Ramar, A., and Schäublin, R.: Impact of He and Cr on defect accumulation in ion-irradiated ultrahigh-purity Fe(Cr) alloys. Acta Mater. 61, 69586971 (2013).CrossRefGoogle Scholar
Amali, A., Rez, P., and Cowley, J.M.: High angle annular dark field imaging of stacking faults. Micron 28, 8994 (1997).Google Scholar
Cowley, J.M. and Huang, Y.: De-channelling contrast in annual dark-field STEM. Ultramicroscopy 40, 171180 (1992).Google Scholar
Miyajima, Y., Mitsuhara, M., Hata, S., Nakashima, H., and Tsuji, N.: Quantification of internal dislocation density using scanning transmission electron microscopy in ultrafine grained pure aluminum fabricated by severe plastic deformation. Mater. Sci. Eng., A 528, 776779 (2010).Google Scholar
Perovic, D.D., Rossouw, C.J., and Howie, A.: Imaging elastic strains in high-angle annular dark field scanning transmission electron microscopy. Ultramicroscopy 52, 353359 (1993).Google Scholar
Pešička, J., Aghajani, A., Somsen, C., Hartmaier, A., and Eggeler, G.: How dislocation substructures evolve during long-term creep of a 12% Cr tempered martensitic ferritic steel. Scr. Mater. 62, 353356 (2010).CrossRefGoogle Scholar
Phillips, P.J., Brandes, M.C., Mills, M.J., and De Graef, M.: Diffraction contrast STEM of dislocation: Imaging and simulations. Ultramicroscopy 111, 14831487 (2011).Google Scholar
Rojas, D., Garcia, J., Prat, O., Agudo, L., Carrasco, C., Sauthoff, G., and Kaysser-Pyzalla, A.R.: Effect of processing parameters on the evolution of dislocation density and subgrain size of a12%Cr heat resistant steel during creep at 650°C. Mater. Sci. Eng., A 528, 13721381 (2011).Google Scholar
Humphreys, C.J.: Fundamental concepts of STEM imaging. Ultramicroscopy 7, 712 (1981).Google Scholar
Maher, D.M. and Joy, D.C.: The formation and interpretation of defect images from crystalline materials in a scanning transmission electron microscope. Ultramicroscopy 1, 239253 (1976).Google Scholar
He, L., Zhai, Y., Liu, C., Jiang, C., Szlufarska, I., Tyburska-Puschel, B., Sridharan, K., and Voyles, P.: High-resolution scanning transmission electron microscopy study of black spot defects in ion irradiated silicon carbide. Microsc. Microanal. 20(S3), 18241825 (2014).CrossRefGoogle Scholar