Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T06:41:41.927Z Has data issue: false hasContentIssue false

Assessing elastic property and solid-solution strengthening of binary Ni–Co, Ni–Cr, and ternary Ni–Co–Cr alloys from first-principles theory

Published online by Cambridge University Press:  20 June 2018

Zhi-biao Yang
Affiliation:
Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
Jian Sun*
Affiliation:
Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
Song Lu
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-100 44, Sweden
Levente Vitos
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-100 44, Sweden; Division of Materials Theory, Department of Physics and Materials Science, Uppsala University, Uppsala SE-75120, Sweden; and Research Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Budapest H-1525, Hungary
*
a)Address all correspondence to this author. e-mail: jsun@sjtu.edu.cn
Get access

Abstract

The elastic properties and solid-solution strengthening (SSS) of the binary Ni–Co and Ni–Cr, and ternary Ni–Co–Cr alloys were investigated by the first-principles method. The results show that both Co and Cr increase lattice parameters of the binary alloys linearly. However, nonlinearity is found in compositional dependence of lattice parameters in the ternary Ni–Co–Cr alloys, that is, Co increases but decreases the lattice parameter at low and high Cr concentrations, respectively. Co increases the bulk, shear, and Young’s moduli (B, G, and E), while Cr increases B but decreases G and E in the binary alloys. In the ternary Ni–Co–Cr alloys, G and E have a similar compositional dependence to those in the binary alloys, except for B. Based on the Labusch model, the SSS parameter of Ni–Cr is larger than that of Ni–Co. The SSS effect increases significantly with Cr addition, especially at low Co concentrations in the ternary Ni–Co–Cr alloys. Meanwhile, it increases mildly with Co addition at low Cr concentrations but decreases with Co addition at high Cr concentrations.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Reed, R.C.: The Superalloys (Cambridge University Press, Cambridge, England, 2006).CrossRefGoogle Scholar
Sims, C.T., Stoloff, N.S., and Hagel, W.C.: Superalloys II (John Wiley, New York, 1987); p. 97.Google Scholar
Jahangiri, M.R., Arabi, H., and Boutorabi, S.M.A.: Development of wrought precipitation strengthened IN939 superalloy. Mater. Sci. Eng. 28, 1470 (2012).Google Scholar
Fleischmann, E., Miller, M.K., Affeldt, E., and Glatzel, U.: Quantitative experimental determination of the solid solution hardening potential of rhenium, tungsten and molybdenum in single-crystal nickel-based superalloys. Acta Metall 87, 350 (2015).Google Scholar
Gu, Y., Harada, H., Cui, C., Ping, D., Sato, A., and Fujioka, J.: New Ni–Co-base disk superalloys with higher strength and creep resistance. Scrip Metall 55, 815 (2006).CrossRefGoogle Scholar
Christofidou, K.A., Jones, N.G., Hardy, M.C., and Stone, H.J.: The oxidation behaviour of alloys based on the Ni–Co–Al–Ti–Cr system. Oxid. Met. 85, 443 (2016).CrossRefGoogle Scholar
Mishima, Y., Ochiai, S., Hamao, N., Yodogawa, M., and Suzuki, T.: Solid solution hardening of nickel-role of transition metal and B-subgroup solutes. Trans. Japan Inst. Met. 27, 656 (1986).CrossRefGoogle Scholar
Roth, H.A., Davis, C.L., and Thomson, R.C.: Modeling solid solution strengthening in nickel alloys. Metall. Mater. Trans. A 28, 1329 (1997).CrossRefGoogle Scholar
Davies, C.K.L., Sagar, V., and Stevens, R.N.: The effect of the stacking fault energy on the plastic deformation of polycristalline NiCo-alloys. Acta Metall. 21, 1343 (1973).CrossRefGoogle Scholar
Akhtar, A. and Teghtsoonian, E.: Plastic deformation of Ni–Cr single crystal. Metall. Trans. 2, 2757 (1971).CrossRefGoogle Scholar
Fleischer, R.L.: Substitutional solution hardening. Acta Metall. 11, 203209 (1963).CrossRefGoogle Scholar
Labusch, R.: A statistical theory of solid solution hardening. Phys. Status Solidi 41, 659 (1970).CrossRefGoogle Scholar
Gypen, L.A. and Deruyttere, A.: Multi-component solid solution hardening. J. Mater. Sci. 12, 1028 (1977).CrossRefGoogle Scholar
Kadambi, S.B., Divya, V.D., and Ramamurty, U.: Evaluation of solid-solution hardening in several binary alloy systems using diffusion couples combined with nanoindentation. Metall. Mater. Trans. A 48, 4574 (2017).CrossRefGoogle Scholar
Franke, O., Durst, K., and Göken, M.: Nanoindentation investigations to study solid solution hardening in Ni-based diffusion couples. J. Mater. Res. 24, 1127 (2009).CrossRefGoogle Scholar
Zhao, J.C.: A combinatorial approach for efficient mapping of phase diagrams and properties. J. Mater. Res. 16, 1565 (2001).CrossRefGoogle Scholar
Vitos, L., Abrikosov, I.A., and Johansson, B.: Anisotropic lattice distortions in random alloys from first principles theory. Phys. Rev. Lett. 87, 156401 (2001).CrossRefGoogle ScholarPubMed
Vitos, L.: Total-energy method based on the exact muffin-tin orbitals theory. Phys. Rev. B 64, 167 (2001).CrossRefGoogle Scholar
Hohenberg, P. and Kohn, W.: Inhomogeneous electron gas. Phys. Rev. B 136, 864 (1964).CrossRefGoogle Scholar
Andersen, O.K., Jepsen, O., and Krier, G.: Exact Muffin-Tin Orbital Theory. In Lectures on Methods of Electronic Structure Calculations, edited by Kumar, V., Andersen, O.K., and Mookerjee, A. (World Scientific, Singapore, 1994); p. 63.Google Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle ScholarPubMed
Gyorffy, B.: Coherent potential approximation for a nonoverlapping muffin-tin potential model of random substitutional alloys. Phys. Rev. B 5, 2382 (1972).CrossRefGoogle Scholar
Tian, L.Y., Wang, G., Harris, J.S., Irving, D.L., Zhao, J., and Vitos, L.: Alloying effect on the elastic properties of refractory high-entropy alloys. Mater. Des. 114, 243 (2017).CrossRefGoogle Scholar
Olsson, P., Abrikosov, I.A., Vitos, L., and Wallenius, J.: Ab initio formation energies of Fe–Cr alloys. J. Nucl. Mater 321, 84 (2003).CrossRefGoogle Scholar
Vitos, L., Korzhavyi, P.A., and Johansson, B.: Stainless steel optimization from quantum mechanical calculations. Nat. Mater 2, 25 (2003).CrossRefGoogle ScholarPubMed
Tian, F., Delczeg, L., Chen, N., Varga, L.K., Shen, J., and Vitos, L.: Structural stability of NiCoFeCrAlx high-entropy alloy from ab initio theory. Phys. Rev. B 88, 085128 (2013).CrossRefGoogle Scholar
Ma, D., Grabowski, B., Körmann, F., Neugebauer, J., and Raabe, D.: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90 (2015).CrossRefGoogle Scholar
Győrffy, B.L., Pindor, A.J., Staunton, J., Stocks, G.M., and Winter, H.: A first-principles theory of ferromagnetic phase transitions in metals. J. Phys. F Met. Phys. 15, 1337 (1985).CrossRefGoogle Scholar
Hill, R.: The elastic behavior of a crystalline aggregate. Proc. Phys. Soc., London, Sect. A 65, 349 (1952).CrossRefGoogle Scholar
Shang, S.L., Saengdeejing, A., Mei, Z.G., Kim, D.E., Zhang, H., Ganeshan, S., Wang, Y., and Liu, Z.K.: First-principles calculations of pure elements: Equations of state and elastic stiffness constants. Comput. Mater. Sci 48, 813 (2010).CrossRefGoogle Scholar
Guo, G.Y. and Wang, H.H.: Gradient-corrected density functional calculation of elastic constants of Fe, Co, and Ni in bcc, fcc, and hcp structures. Chin. J. Phys. 38, 949 (2000).Google Scholar
Ledbetter, H.M. and Reed, R.P.: Elastic properties of metals and alloys, I. Iron, nickel, and iron–nickel alloys. J. Phys. Chem. Ref. Data 2, 531 (1973).CrossRefGoogle Scholar
Pearson, W.B. and Thompson, L.T.: The lattice spacings of nickel solid solutions. Can. J. Phys 35, 349 (1957).CrossRefGoogle Scholar
Taylor, A. and Floyd, R.W.: The constitution of nickel-rich alloys of the nickel chromium titanium system. J. Inst. Metals 80, 577 (1952).Google Scholar
Levämäki, H., Punkkinen, M.P.J., Kokko, K., and Vitos, L.: Quasi-non-uniform gradient-level exchange-correlation approximation for metals and alloys. Phys. Rev. B 86, 201104 (2012).CrossRefGoogle Scholar
Levämäki, H., Punkkinen, M.P.J., Kokko, K., and Vitos, L.: Flexibility of the quasi-non-uniform exchange-correlation approximation. Phys. Rev. B 89, 115107 (2014).CrossRefGoogle Scholar
Kudrnovský, J., Drchal, V., and Bruno, P.: Magnetic properties of fcc Ni-based transition metal alloys. Phys. Rev. B 77, 224422 (2008).CrossRefGoogle Scholar
Punkkinen, M., Kwon, S., Kollár, J., Johansson, B., and Vitos, L.: Compressive surface stress in magnetic transition metals. Phys. Rev. Lett. 106, 057202 (2011).CrossRefGoogle ScholarPubMed
Olsson, P., Abrikosov, I.A., and Wallenius, J.: Electronic origin of the anomalous stability of Fe-rich bcc Fe–Cr alloys. Phys. Rev. B 73, 104416 (2006).CrossRefGoogle Scholar
Yukawa, N., Hida, M., Imura, T., Mizuno, Y., and Kawamura, M.: Structure of chromium-rich Cr–Ni, Cr–Fe, Cr–Co, and Cr–Ni–Fe alloy particles made by evaporation in argon. Metall. Mater. Trans. B 3, 887 (1972).CrossRefGoogle Scholar
Nurmi, E., Wang, G., Kokko, K., and Vitos, L.: Assessing the elastic properties and ductility of Fe–Cr–Al alloys from ab initio calculations. Philos. Mag. Ser. 96, 122 (2016).CrossRefGoogle Scholar
Leamy, H.J. and Warlimont, H.: The elastic behaviour of Ni–Co alloys. Phys Status Solidi. B 37, 523 (1970).CrossRefGoogle Scholar
Lenkkeri, J.T.: Measurements of elastic moduli of face-centred cubic alloys of transition metals. J. Phys. F: Metal Phys 11, 1991 (1981).CrossRefGoogle Scholar
Pugh, S.F.: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. Ser 7, 823 (1954).CrossRefGoogle Scholar
Wu, Z., Gao, Y., and Bei, H.: Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys. Acta Mater 120, 108 (2016).CrossRefGoogle Scholar