Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T00:47:20.291Z Has data issue: false hasContentIssue false

Assessment of geometrical and transport properties of a fibrous C/C composite preform as digitized by x-ray computerized microtomography: Part II. Heat and gas transport properties

Published online by Cambridge University Press:  31 January 2011

Gerard L. Vignoles*
Affiliation:
Université Bordeaux 1, Laboratoire des Composites ThermoStructuraux (LCTS) 3, Allée La Boëtie, F33600 Pessac, France
Olivia Coindreau
Affiliation:
Université Bordeaux 1, Laboratoire des Composites ThermoStructuraux (LCTS) 3, Allée La Boëtie, F33600 Pessac, France
Azita Ahmadi
Affiliation:
Université Bordeaux 1, Transport, Ecoulements Fluides, Energétique (TREFLE), Esplanade des Arts et Métiers, F33405 Talence, France
Dominique Bernard
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), 26 Avenue du Dr. Schweitzer, F33608 Pessac Cedex, France
*
a)Address all correspondence to this author. e-mail: vinhola@lcts.u-bordeaux1.fr
Get access

Abstract

Raw and partially infiltrated carbon–carbon composite preforms have been scanned by high-resolution synchrotron radiation x-ray computerized microtomography. Three-dimensional high-quality images of the pore space have been produced at two distinct resolutions and have been used for the computation of transport properties: heat conductivity, binary gas diffusivities, Knudsen diffusivities, and viscous flow permeabilities. The computation procedures are based on a double change-of-scale strategy suited to the bimodal nature of pore space and on the local determination of transport anisotropy. Good agreement has been found between all calculated quantities and experimental data.

Type
Articles
Copyright
Copyright © Materials Research Society2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Naslain, R.Langlais, F.: Fundamental and practical aspects of the chemical vapor infiltration of porous materials. High Temp. Sci. 27, 221 1990Google Scholar
2Besmann, T.M., Sheldon, B.W., Lowden, R.A.Stinton, D.P.: Vapor-phase fabrication and properties of continuous-filament ceramic composites. Science 253, 1104 1991Google ScholarPubMed
3Vaidyaraman, S., Lackey, W.J., Agrawal, P.K.Starr, T.L.: 1-D model for forced-flow-thermal gradient chemical vapor infiltration process for carbon/carbon composites. Carbon 34, 1123 1996CrossRefGoogle Scholar
4Ofori, J.Y.Sotirchos, S.V.: Structural model effects on the predictions of CVI models. J. Electrochem. Soc. 143, 1962 1996CrossRefGoogle Scholar
5Reuge, N.Vignoles, G.L.: Modeling of isobaric–isothermal chemical vapor infiltration: Effects of reactor control parameters on a densification. J. Mater. Proc. Technol. 166, 15 2005Google Scholar
6Vignoles, G.L., Nadeau, N., Brauner, C-M., Lines, J-F.Puiggali, J-R.: The notion of densification front in CVI processing of CMCs. Ceram. Eng. Sci. Proc. 26, 187 2005CrossRefGoogle Scholar
7Vignoles, G.L., Goyhénèche, J-M., Sébastian, P., Puiggali, J-R., Lines, J-F., Lachaud, J., Delhaès, P.Trinquecoste, M.: The film-boiling densification process for C/C composite fabrication: From local scale to overall optimization. Chem. Eng. Sci. 61, 5336 2006Google Scholar
8Nadeau, N., Vignoles, G.L.Brauner, C-M.: Analytical and numerical study of the densification of carbon/carbon composites by a film-boiling chemical vapor infiltration process. Chem. Eng. Sci. 61, 7509 2006CrossRefGoogle Scholar
9Vignoles, G.L.: Modelling of CVI Processes, in Proc. CIMTEC 2006, edited by P. Vicenzini, Adv. Sci. Technol. 50 (Trans Tech Publications, Zürich, 2006), 97106Google Scholar
10Coindreau, O.Vignoles, G.L.: Assessment of geometrical and transport properties of a fibrous C/C composite preform using x-ray computerized micro-tomography. Part I: Image acquisition and geometrical properties. J. Mater. Res. 20, 2328 2005CrossRefGoogle Scholar
11Russell, L.M., Johnson, L.F.Hasselman, D.P.H.: Thermal conductivity/diffusivity of silicon carbide whisker reinforced mullite. J. Am. Ceram. Soc. 70, C226 1987Google Scholar
12Tawil, H., Bentsen, L.D., Baskaran, S.Hasselman, D.P.H.: Thermal diffusivity of chemically vapor deposited silicon carbide reinforced with silicon carbide or carbon fibres. J. Mater. Sci. 20, 3201 1985CrossRefGoogle Scholar
13Jaklitsch, D.J.Walkinshaw, J.W.: Flash pulse measurement for off-axis thermal conductivity of carbon composite materials. Ind. Eng. Chem. Res. 27, 702 1988CrossRefGoogle Scholar
14Skamser, D.J., Bentz, D.P., Coverdale, R.T., Spotz, M.S., Martys, N., Jennings, L.H.Johnson, D.L.: Calculation of the thermal conductivity and gas permeability in a uniaxial bundle of fibers. J. Am. Ceram. Soc. 77, 2669 1994CrossRefGoogle Scholar
15Starr, T.L.Hablutzel, N.: Measurement of gas transport through fiber preforms and densified composites for chemical vapor infiltration. J. Am. Ceram. Soc. 81, 1298 1998Google Scholar
16Perrins, W.T., McKenzie, D.R.McPhedran, R.C.: Transport properties of regular arrays of cylinders. Proc. R. Soc. London A 369, 207 1979Google Scholar
17Milton, G.W.: Bounds on the transport and optical properties of a two-component composite material. J. Appl. Phys. 52, 5294 1981CrossRefGoogle Scholar
18Tsai, D.S.Strieder, W.: Effective conductivities of random fibre beds. Chem. Eng. Commun. 40, 207 1986Google Scholar
19Kim, I.Torquato, S.: Determination of the effective conductivity of heterogeneous media by brownian motion simulation. J. Appl. Phys. 68, 3892 1990CrossRefGoogle Scholar
20Tomadakis, M.M.Sotirchos, S.V.: Ordinary and transition regime diffusion in random fibre structures. AIChE J. 39, 397 1993CrossRefGoogle Scholar
21Tomadakis, M.M.Sotirchos, S.V.: Transport properties of random arrays of freely overlapping cylinders with various orientation distributions. J. Chem. Phys. 98, 616 1993CrossRefGoogle Scholar
22Transvalidou, F.: Diffusion of gases in structures of multifilamentous fibers, Ph.D. Thesis, University of Rochester, New York (1995)Google Scholar
23Sangani, A.S.Acrivos, A.: Slow flow past periodic arrays of cylinders with application to heat transfer. Int. J. Multiphase Flow 8, 193 1982Google Scholar
24McCarthy, J.F.: Analytical models for the effective permeability of sand-shale reservoirs. Geophys. Int. J. 105, 513 1991CrossRefGoogle Scholar
25van der Westhuizen, J.du Plessis, J.P.: An attempt to quantify fibre bed permeability utilizing the phase average navier-stokes equation. Composites Part A 27, 263 1996CrossRefGoogle Scholar
26Cloetens, P., Barrett, R., Baruchel, J., Guigay, J.P.Schlenker, M.: Phase objects in synchrotron radiation hard x-ray imaging. J. Phys. D 29, 133 1996Google Scholar
27Coindreau, O., Vignoles, G.L.Cloetens, P.: Direct 3D microscale imaging of carbon-carbon composites with computed holotomography. Nucl. Instrum. Meth. Phys. Res. B 200, 308 2003Google Scholar
28Jonard, M.Study of the pore network in tridimensional textures (Engineering report, Snecma, Le Haillan, France, 2001), in FrenchGoogle Scholar
29Vignoles, G.L.: Modelling binary, Knudsen and transition regime diffusion inside complex porous media. J. Physique IV C5, 159 1995Google Scholar
30Pollard, W.G.Present, R.D.: On gaseous self-diffusion in straight cylindrical pores. Phys. Rev. 73, 762 1948CrossRefGoogle Scholar
31Coindreau, O., Vignoles, G.L.Goyhénèche, J-M.: Multiscale x-ray CMT of C/C composites: A tool for properties assessment. Ceram. Trans. 175, 77 2005CrossRefGoogle Scholar
32Tomadakis, M.M.Sotirchos, S.V.: Effects of fiber orientation and overlapping on Knudsen, transition, and ordinary regime diffusion in fibrous structures, in Chemical Vapor Deposition of Refractory Metals and Ceramics II, edited by T.M. Besmann, B.M. Gallois, and J.W. Warren (Mater. Res. Soc. Symp. Proc. 250, Pittsburgh, PA, 1992), 221226CrossRefGoogle Scholar
33Sanchez-Palencia, E.: Non-homogeneous media and vibration theory, in Lecture Notes in Physics, 127 (Springer, Berlin, 1980)Google Scholar
34Bensoussan, A., Lions, J-L.Papanicolaou, G.: Asymptotic Analysis for Periodic Structures North-Holland Publishing Company Amsterdam, The Netherlands 1978Google Scholar
35Whitaker, S.: Diffusion and dispersion in porous media. AIChE J. 13, 420 1967CrossRefGoogle Scholar
36Barrère, J., Gipouloux, O.Whitaker, S.: On the closure problem for Darcy’s law. Trans. Porous Media 7, 209 1992CrossRefGoogle Scholar
37Darcy, H.P.G.: The Public Springs of the City of Dijon Victor Dalmont Paris, France 1856Google Scholar
38Quintard, M.Whitaker, S.: Transport in ordered and disordered porous media: Volume-averaged equations, closure problems, and comparison with experiment. Chem. Eng. Sci. 48, 2537 1993Google Scholar
39Anguy, Y., Bernard, D.Ehrlich, R.: The local change of scale method for modelling flow in natural porous media (I): Numerical tools. Adv. Water Res. 17, 337 1994Google Scholar
40Bernard, D.: Using the volume averaging technique to perform the first change of scale for natural random porous media, in Advanced Methods for Groundwater Pollution Control,Courses and Lectures No. 364, edited by G. Gambolati and G. Verri (Springer-Verlag, Wien, New-York, 1995)Google Scholar
41Johnson, D.L., Koplik, J.Schwartz, L.M.: New pore-size parameter characterizing porous media. Phys. Rev. Lett. 57, 2564 1986Google ScholarPubMed
42Tomadakis, M.M.Robertson, T.J.: Viscous permeability of random fiber structures: Comparison of electrical and diffusional estimates with experimental and analytical results. J. Compos. Mater. 39, 163 2005CrossRefGoogle Scholar
43Gutowski, T.G., Cai, Z., Bauer, S., Boucher, D., Kingery, J.Wineman, S.: Consolidation experiments for laminate composites. J. Composite Mater. 21, 650 1987Google Scholar
44Gallego, N.C., Edie, D.D., Nysten, B., Issi, J.P., Treleaven, J.W.Deshpande, G.V.: The thermal conductivity of ribbon-shaped carbon fibers. Carbon 38, 1003 2000CrossRefGoogle Scholar
45Pradère, C.Thermal and thermomechanical characterization of fibers up to very high temperatures, Ph.D. Thesis, University Bordeaux I(2003), in FrenchGoogle Scholar
46Sauder, C. High-temperature structure-properties relationship in carbon fibers and matrices, Ph.D. Thesis, University Bordeaux I, 2477 (2001), in FrenchGoogle Scholar
47Jumel, J., Krapez, J-C., Lepoutre, F., Enguehard, F., Rochais, D., Neuer, G.Cataldi, M.: Microscopic thermal characterization of C/C and C/C-SiC composites, in 28th Annual Review of Progress in QNDE,edited by D.O. Thomson and D.E. Chimenti, Brunswick (USA), (American Institute of Physics, Melville, NY, 2001)CrossRefGoogle Scholar
48Jumel, J., Lepoutre, F., Roger, J-P., Neuer, G., Cataldi, M.Enguehardt, F.: Microscopic thermal characterization of composites. Rev. Sci. Instrum. 74, 537 2003CrossRefGoogle Scholar
49Staicu, D.M., Jeulin, D., Beauvy, M., Laurent, M., Berlanga, C., Negrello, N.Gosset, D.: Effective thermal conductivity of heterogeneous materials: Calculation methods and application to different microstructures, High Temp. High Press. 33, 293 2001CrossRefGoogle Scholar
50Youngblood, G.E., Senor, D.J., Jones, R.H.Graham, S.: The transverse conductivity of 2D-SiCf/SiC composites. Comp. Sci. Technol. 62, 1127 2002CrossRefGoogle Scholar
51Nozad, I., Carbonell, R.G.Whitaker, S.: Heat conduction in multiphase systems—I. Theory and experiment for two-phase systems. Chem. Eng. Sci. 40, 843 1985Google Scholar
52Quintard, M.Whitaker, S.: Single phase flow in porous media: Effect of local heterogeneities. J. Méc. Théor. Appl. 6, 691 1987Google Scholar
53Quintard, M.Whitaker, S.: Transport in ordered and disordered media II: Generalized volume-averaging. Transport Porous Media 14, 179 1994CrossRefGoogle Scholar
54Edwards, M.G.Rogers, C.F.: A flux continuous scheme for the full tensor pressure equation, in Proceeding 4th European Conference on the Mathematics of Oil Recovery, DEuropean Association of Geoscientists and Engineers, Houten, The Netherlands, 1994)CrossRefGoogle Scholar
55Cherblanc, F., Ahmadi, A.Quintard, M.: Two-medium description of dispersion in heterogeneous porous media: calculation of macroscropic properties. Water Resour. Res. 39, 1154 2003CrossRefGoogle Scholar
56Demange, D.Laizet, J.C.Measurements of thermal conductivity in raw and infiltrated preforms (Technical Report No. RT 1/03519 DMSC, Commissariat à l’Energie Atomique, Le Ripault, France, 2000), in FrenchGoogle Scholar
57Dourges, M-A., Coindreau, O., Reuge, N., Vignoles, G.L.Pailler, R.: Characterization of complex solid porous media, in Proceedings of Porous media Workshop, edited by L. Tadrist (IUSTI, Marseilles, France, 2001), in FrenchGoogle Scholar
58Coindreau, O.Vignoles, G.L.: Computing structural and transport properties of C/C composites from 3D tomographic images. Mater. Sci. Forum 455–456, 751 2004CrossRefGoogle Scholar
59Huizenga, D.G.Smith, D.M.: Knudsen diffusion in random assemblages of uniform spheres. AIChE J. 32, 1 1986Google Scholar
60Klinkenberg, L.J.: The permeability of porous media to liquids and gases, in Drilling and Production Practice, 1947, (American Petroleum Institute, Washington, DC), 200214Google Scholar
61Wu, Y-S., Pruess, K.Persoff, P.: Gas flow in porous media with Klinkenberg effects, Trans. Porous Media 32, 117 1998Google Scholar