Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T02:44:05.816Z Has data issue: false hasContentIssue false

Atomic and molecular emission following fracture of alkali halides: A dislocation driven process

Published online by Cambridge University Press:  31 January 2011

J.T. Dickinson
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164–2814
L.C. Jensen
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164–2814
S.C. Langford
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164–2814
J.P. Hirth
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164–2814
Get access

Abstract

During and following fracture of a number of materials, the emission of photons, electrons, ± ions, and neutral species are observed; these emissions are collectively known as fracto-emission. In this work, we present measurements of the neutral particle emission following fracture of two single crystal fcc alkali halides: NaCl and LiF. We observe no measurable emission attributable to release during the fracture event itself. However, after relatively long time intervals of ∼0.5–250 ms, we observe rapid bursts of alkali atoms, as well as molecular species which include NaCl and (LiF)n where n = 1,2,3. Bursts of alkali containing species also occur during loading prior to fracture and for unloaded specimens during heat treatment. We argue that these bursts are due to energetic emergence (“popout”) of dislocations at free surfaces.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Dickinson, J. T., Jensen, L. C., and Bhattacharya, S., Die Makro-molekulare Chemie: Macromolecular Symposia 7, 129 (1987).Google Scholar
2Langford, S. C., Zhenyi, Ma, and Dickinson, J. T., J. Mater. Res. 4, 1272 (1989).CrossRefGoogle Scholar
3Langford, S. C. and Dickinson, J. T., in Spectroscopic Characterization of Minerals and Their Surfaces, edited by Coyne, L. M., McKeever, S. W., and Blake, D. F., ACS Symposium Series Publication 415, pp. 224244 (1990).CrossRefGoogle Scholar
4Dickinson, J. T., “Fracto-Emission from Adhesive Failure,” to appear in Adhesive Bonding, edited by Lee, L-H. (Plenum Press, New York, 1990).Google Scholar
5Dickinson, J. T., “Fracto-emission,” to appear in Non-Destructive T esting-Composites, edited by Summerscales, J. (Elsevier, Amsterdam).Google Scholar
6Dickinson, J. T., Jensen, L. C., McKay, M. R., and Freund, F., J. Vac. Sci. Technol. A4, 1648 (1986).Google Scholar
7Dickinson, J. T., Jensen, L. C., and McKay, M. R., J. Vac. Sci. Technol. A5, 1162 (1987).CrossRefGoogle Scholar
8Dickinson, J. T., Langford, S. C., Jensen, L. C., Kelso, J., Pantano, C., and McVay, G., J. Vac. Sci. Technol. A 6, 1084 (1988).Google Scholar
9Datz, S. and Taylor, E. H., J. Chem. Phys. 25, 389 (1956).Google Scholar
10Zandberg, E.Ya. and Ionov, N. I., Poverkhnostnaya ionizatsiya (Nauka, Moscow, 1960) [Surface Ionization, translated by Harnik, E. (Israel Program for Scientific Translations, Jerusalem, 1971)].Google Scholar
11Berkowitz, J. and Chupka, W. A., J. Chem. Phys. 29, 653 (1958).CrossRefGoogle Scholar
12Berkowitz, J., Batson, C. H., and Goodman, G. L., J. Chem. Phys. (Paris) 77, 631 (1980).Google Scholar
13Donaldson, E. E., Dickinson, J. T., and Bhattacharya, S. K., J. Adhesion 25, 281 (1988).Google Scholar
14Lipson, A. G., Kuznetsov, V. A., Klyuev, V. A., Toporov, Yu. P., and Deryagin, B. V., Dokl. Akad. Nauk SSR 294, 1161 (1987) [Dokl. Phys. Chem. 294, 575 (1987)].Google Scholar
15Mathison, J. P., Langford, S. C., and Dickinson, J. T., J. Appl. Phys. 65, 1923 (1989).CrossRefGoogle Scholar
16Wollbrandt, J., Brückner, U., and Linke, E., Phys. Status Solidi (a) 77, 545 (1983).Google Scholar
17Poletaev, A. V. and Shmurak, S. Z., Fiz. Tverd. Tela (Leningrad) 26, 35673575 (1984) [Sov. Phys. Solid State 26, 2147 (1984)].Google Scholar
18Molotskii, M. I., Fiz. Tverd. Tela (Leningrad) 25, 121 (1983) [Sov. Phys. Solid State 25, 67 (1983)].Google Scholar
19Hirth, J. P. and Lothe, Jens, Theory of Dislocations, 2nd ed. (John Wiley & Sons, New York, 1982), pp. 168169.Google Scholar
20Johnston, W. G. and Gilman, J. J., J. Appl. Phys. 30, 129 (1959).CrossRefGoogle Scholar
21Mason, W. P., in Dislocation Dynamics, edited by Rosenfield, A. R., Hahn, G. T., Bement, A. L., Jr., and Jaffee, R. I. (McGraw-Hill, New York, 1968), pp. 487505.Google Scholar
22Hildenbrand, D. L., Hall, W. F., Ju, F., and Potter, N. D., J. Chem. Phys. 40, 2882 (1964).CrossRefGoogle Scholar
23Short, D. W., Rapp, R. A., and Hirth, J. P., J. Chem. Phys. 57, 1381 (1972).Google Scholar
24Armstrong, R. W., Coffey, C. S., and Elban, W. L., Acta Metall. 30, 2111 (1982).CrossRefGoogle Scholar
25Gilman, J. J., Knudsen, C., and Walsh, W. P., J. Appl. Phys. 29, 601 (1958).CrossRefGoogle Scholar
26Burns, S. J. and Webb, W. W., Trans. Metall. Soc. AIME 236, 1165 (1966).Google Scholar
27Swain, M. V., Lawn, B. R., and Burns, S. J., J. Mater. Sci. 9, 175 (1974).Google Scholar
28Forwood, C. T. and Lawn, B. R., Philos. Mag. 13, 595 (1966).Google Scholar
29Langford, S. C., Zhenyi, Ma, Jensen, L. C., and Dickinson, J. T., J. Vac. Sci. Technol. A8, 3470 (1990).Google Scholar
30Yoo, K. C., Rosemeier, R. G., Elban, W. L., and Armstrong, R. W., J. Mater. Sci. Lett. 3, 560 (1984).Google Scholar