Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T00:59:47.846Z Has data issue: false hasContentIssue false

Atomistic simulation for configuration evolution and energetic calculation of crack in body-centered-cubic iron

Published online by Cambridge University Press:  03 March 2011

Li-Xia Cao*
Affiliation:
Central Iron and Steel Research Institute, Beijing 100081, People’s Republic of China
Chong-Yu Wang
Affiliation:
International Centre for Materials Physics, Academia Sinica, Shenyang 110016, People’s Republic of China; and Central Iron and Steel Research Institute, Beijing 100081, People’s Republic of China; and Department of Physics, Tsinghua University, Beijing 100084, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: cao_lx@sohu.com
Get access

Abstract

The molecular dynamics method has been used to simulate mode I cracking in body-centered-cubic iron. Close attention has been paid to the process of the atomic configuration evolution of the cracks. The simulation shows that at low temperatures, partial dislocations are emitted before the initiation of crack propagation, subsequently forming the stacking faults or multilayer twins on {112} planes, and then brittle cleavage and extended dislocation nucleation are observed at the crack tip accompanied by twin extension. These results are in agreement with the experimental observation that twinning and fracture processes cooperate at low temperatures. Furthermore, an energetics analysis has been made on the deformation behavior observed at the crack tip. The effect of temperature on the fracture process is discussed. At the higher temperature, plastic deformation becomes easier, and crack blunting occurs. With increasing temperature, the fracture resistance increases, and the effect of the lattice trapping can be weakened by thermal activation.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kelly, A., Tyson, W.R., Cottrell, A.H.: Ductile and brittle crystals. Philos. Mag. 15, 567 (1967).CrossRefGoogle Scholar
2.Rice, J.R., Thomson, R.: Ductile versus brittle behaviour of crystals. Philos. Mag. 29, 73 (1974).CrossRefGoogle Scholar
3.Rice, J.R.: Dislocation nucleation from a crack tip: An analysis based on the peierls concept. J. Mech. Phys. Solids 40, 239 (1992).CrossRefGoogle Scholar
4.Rice, J.R., Beltz, G.E.: The activation energy for dislocation nucleation at a crack. J. Mech. Phys. Solids 42, 333 (1994).CrossRefGoogle Scholar
5.Hirsch, P.B., Roberts, S.G.: Comment on the brittle-to-ductile transition: A cooperative dislocation generation instability; dislocation dynamics and the strain-rate dependence of the transition temperature. Acta Mater. 44, 2361 (1996).CrossRefGoogle Scholar
6.Hartmaier, A., Gumbsch, P.: On the activation energy for the brittle/ductile transition. Phys. Status Solidi B 202, R1 (1997).3.0.CO;2-J>CrossRefGoogle Scholar
7.Gumbsch, P., Riedle, J., Hartmaier, A., Fischmeister, H.F.: Controlling factors for the brittle-to-ductile transition in tungsten single crystals. Science 282, 1293 (1998).CrossRefGoogle ScholarPubMed
8.Ohr, S.M.: An electron microscope study of crack tip deformation and its impact on the dislocation theory of fracture. Mater. Sci. Eng. 72, 1 (1985).CrossRefGoogle Scholar
9.Lii, M.J., Chen, X.F., Katz, Y., Gerberich, W.W.: Dislocation modeling and acoustic emission observation of alternating ductile/brittle events in Fe-3wt%Si crystals. Acta Metall. Mater. 38, 2435 (1990).CrossRefGoogle Scholar
10.Zielinski, W., Lii, M.J., Gerberich, W.W.: Crack-tip dislocation emission arrangements for equilibrium—I. In situ TEM observations of Fe-2wt%Si. Acta Metall. Mater. 40, 2861 (1992).CrossRefGoogle Scholar
11.Machová, A., Beltz, G.E., Chang, M.: Atomistic simulation of stacking fault formation in bcc iron. Model. Simul. Mater. Sci. Eng. 7, 949 (1999).CrossRefGoogle Scholar
12.Farkas, D., Duranduru, M.: Multiple-dislocation emission from the crack tip in the ductile fracture of Al. Philos. Mag. A 81, 1241 (2001).CrossRefGoogle Scholar
13.Hull, D.: Twinning and fracture of single crystals of 3% silicon iron. Acta Metall. 8, 11 (1960).CrossRefGoogle Scholar
14.Sleeswyk, A.W.: Twinning and the origin of cleavage nuclei in α-iron. Acta Metall. 10, 803 (1962).CrossRefGoogle Scholar
15.Ogawa, K.: Edge dislocations dissociated in {112} planes and twinning mechanism of b.c.c. metals. Philos. Mag. 11, 217 (1965).CrossRefGoogle Scholar
16.Bošanský, J., Šmida, T.: Deformation twins – Probable inherent nuclei of cleavage fracture in ferritic steels. Mater. Sci. Eng., A 323, 198 (2002).CrossRefGoogle Scholar
17.deCelis, B., Argon, A.S., Yip, S.: Molecular dynamics simulation of crack tip processes in alpha-iron and copper. J. Appl. Phys. 54, 4864 (1983).CrossRefGoogle Scholar
18.Cheung, K.S., Yip, S.: A molecular-dynamics simulation of crack-tip extension: The brittle-to-ductile transition. Model. Simul. Mater. Sci. Eng. 2, 865 (1994).CrossRefGoogle Scholar
19.Hu, S.Y., Ludwig, M., Kizler, P., Schmauder, S.: Atomistic simulations of deformation and fracture of α–Fe. Model. Simul. Mater. Sci. Eng. 6, 567 (1998).CrossRefGoogle Scholar
20.Hai, S., Tadmor, E.B.: Deformation twinning at aluminum crack tips. Acta Mater. 51, 117 (2003).CrossRefGoogle Scholar
21.Finnis, M.W., Sinclair, J.E.: A simple empirical N-body potential for transition metals. Philos. Mag. A. 50, 45 (1984).CrossRefGoogle Scholar
22.Finnis, M.W., Sinclair, J.E.: Erratum. Philos. Mag. A. 53, 161 (1986).Google Scholar
23.Sih, G.C., Liebowitz, H. Mathematical theories of brittle fracture, in Fracture: An Advanced Treatise, Vol. 2, edited by Liebowitz, H. (Academic Press, New York, 1968), pp. 108125.Google Scholar
24.Hua, L., Rafii-Tabar, H., Cross, M.: Molecular dynamics simulation of fractures using an N-body potential. Philos. Mag. Lett. 75, 237 (1997).CrossRefGoogle Scholar
25.Machová, A., Ackland, G.J.: Dynamic overshoot in α-iron by atomistic simulations. Model. Simul. Mater. Sci. Eng. 6, 521 (1998).CrossRefGoogle Scholar
26.Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids (Oxford University Press, New York, 1987), p. 83.Google Scholar
27.Thomson, R., Hsieh, C., Rana, V.: Lattice trapping of fracture cracks. J. Appl. Phys. 42, 3154 (1971).CrossRefGoogle Scholar
28.Hull, D., Bacon, D.J.: Introduction to Dislocations, 3rd ed. (Pergamon Press, New York, 1984), p. 7.Google Scholar
29.Macmillan, N.H. The ideal strength of solids, in Atomistics of Fracture, edited by Latanision, R.M. and Pickens, J.R., (Plenum Press, New York, 1983), p. 111.Google Scholar
30.Frenkel, J.: The theory of the elastic limit and the hardness of crystalline body. Z. Phys. 37, 572 (1926).CrossRefGoogle Scholar
31.Wang, T.C.: Fracture criteria for combined cleavage and dislocation emission. Philos. Mag. A 74, 983 (1996).CrossRefGoogle Scholar
32.Latapie, A., Farkas, D.: Molecular dynamics investigation of the fracture behavior of nanocrystalline α–Fe. Phys. Rev. B 69, 134110 (2004).CrossRefGoogle Scholar