Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-02T19:17:50.696Z Has data issue: false hasContentIssue false

Biocompatible whiskers with controlled morphology and stoichiometry

Published online by Cambridge University Press:  03 March 2011

Wojciech Suchanek
Affiliation:
Research Laboratory of Engineering Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226 Japan
Hiroyuki Suda*
Affiliation:
Research Laboratory of Engineering Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226 Japan
Masatomo Yashima
Affiliation:
Research Laboratory of Engineering Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226 Japan
Masato Kakihana
Affiliation:
Research Laboratory of Engineering Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226 Japan
Masahiro Yoshimura
Affiliation:
Research Laboratory of Engineering Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226 Japan
*
a)Present address: National Institute of Materials and Chemical Research, 1-1 Higasaki, Tsukuba 305, Japan.
Get access

Abstract

Hydroxyapatite whiskers have been prepared by the hydrothermal method. The crystals had diameter, length, and aspect ratio in the range of 1–10 μm, 30–50 μm, and 5–20, respectively. Their Ca/P molar ratio varied from 1.59 to 1.62. The morphology of the crystals can easily be controlled by the concentrations of species in the starting solution, while the Ca/P ratio is almost independent of them. Through the reaction with calcite powder at 600 °C, the Ca/P ratio of the whiskers has been improved even to the stoichiometric value of 1.67. Taking into account morphology and chemical composition of the HAp whiskers, they should not be health hazardous and may find applications as substitutes for asbestos and other fibrous materials which presently have restricted use because of their carcinogenic natures.

Type
Environmentally Benign Materials and Processes
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Cooke, T. F., J. Am. Ceram. Soc. 74, 2959 (1991).CrossRefGoogle Scholar
2Mossman, B. T., Bignon, J., Corn, M., Seaton, A., and Gee, J. B. L., Science 247, 294 (1990).CrossRefGoogle Scholar
3Birchall, J. D., Stanley, D. R., Mockford, M. J., Pigott, G. H., and Pinto, P. J., J. Mater. Sci. Lett. 7, 350 (1988).Google Scholar
4Stanton, M. F., Layard, M., Tegeris, A., Miller, F., May, M., Morgan, E., and Smith, A., J. Natl. Cancer Inst. 67, 965 (1981).Google Scholar
5Pott, F., Staub-Reinh. Luft, 38, 486 (1978).Google Scholar
6Hench, L. L., J. Am. Ceram. Soc. 74, 1487 (1991).CrossRefGoogle Scholar
7LeGeros, R.Z., Monographs in Oral Science, vol. 15, Calcium Phosphates in Oral Biology and Medicine (Karger AG, 1991).Google Scholar
8Kinoshita, M., Kishioka, A., Hayashi, H., and Itatani, K., Gypsum & Lime 219, 79 (1989), in Japanese.Google Scholar
9Kinoshita, M., Itatani, K., Nakamura, S., and Kishioka, A., Gypsum & Lime 227, 207 (1990), in Japanese.Google Scholar
10Christiansen, N. and Riman, R. E., in Proceedings of the 5th Scandinavian Symposium on Materials Science, New Materials and Processes (1989), p. 209.Google Scholar
11Suda, H., Asaoka, N., and Yoshimura, M., in Bioceramics, Proceedings of the 5th International Symposium on Ceramics in Medicine, Kyoto, Japan, 1992, Vol. 5, p. 31.Google Scholar
12Yoshimura, M. and Suda, H., in Apatite and Related Compounds, edited by Brown, P. (CRC Press Pub. Co., Boca Raton, FL, 1994).Google Scholar
13Yoshimura, M., Suda, H., Okamoto, K., and Ioku, K., J. Mater. Sci. 29, 3399 (1994).Google Scholar
14Mortier, A., Lemaitre, J., Rodrique, L., and Rouxhet, P. G., J. Solid State Chem. 78, 215 (1989).Google Scholar
15Ioku, K., Yoshimura, M., and Sōmiya, S., Nippon Kagaku Kaishi, 1565 (1988), in Japanese.CrossRefGoogle Scholar
16Yoshimura, M., Suda, H., Okamoto, K., and Ioku, K., Nippon Kagaku Kaishi, 1402 (1991), in Japanese.Google Scholar
17Kamiya, K., Yoko, T., Tanaka, K., and Fujiyama, Y., J. Mater. Sci. 24, 827 (1989).CrossRefGoogle Scholar
18Tanahashi, M., Kamiya, K., Suzuki, T., and Nasu, H., J. Mater. Sci.: Mater. Med. 3, 48 (1992).Google Scholar
19Honda, T., Takagi, M., Uchida, N., Saito, K., and Uematsu, K., J. Mater. Sci.: Mater. Med. 1, 114 (1990).Google Scholar
20Monma, H. and Kamiya, T., J. Mater. Sci. 22, 4247 (1987).Google Scholar
21Silverman, S. R., Fuyat, R. K., and Weiser, J. D., Am. Mineral. 37, 211 (1952).Google Scholar
22Zawacki, S. J., Heughebaert, J. C., and Nancollas, G. H., J. Coll. Interf. Sci. 135, 33 (1990).CrossRefGoogle Scholar
23Young, R. A. and Holcomb, D. W., Calcif. Tissue Int. 34, S17 (1982).Google Scholar
24Monma, H., Ueno, S., and Kanazawa, T., J. Chem. Tech. Biotechnol. 31, 15 (1981).Google Scholar
25Fowler, B. O., Inrog. Chem. 13, 194 (1974).CrossRefGoogle Scholar
26Nelson, D. G. A. and Featherstone, J.D.B., Calcif. Tissue Int. 34, S69 (1982).Google Scholar
27Elliot, J. C., Clin. Orthop. Rel. Res. 93, 313 (1973).CrossRefGoogle Scholar
28Meyer, J. L. and Fowler, B. O., Inorg. Chem. 21, 3029 (1982).CrossRefGoogle Scholar
29Mortier, A., Lemaitre, J., and Rouxhet, P. G., Thermochim. Acta 143, 265 (1989).CrossRefGoogle Scholar
30Jarcho, M., Bolen, C. H., Thomas, M. B., Bobick, J., Kay, J. F., and Doremus, R. H., J. Mater. Sci. 11, 2027 (1976).CrossRefGoogle Scholar
31Suwa, Y., Banno, H., and Saito, H., in Apatite, Proceedings of the First International Symposium on Apatite, Mishima, Japan, 1991, Vol. 1, p. 135.Google Scholar
32Ioku, K. and Yoshimura, M., Phosphorus Res. Bull. 1, 15 (1991).Google Scholar
33Vereecke, G. and Lemaitre, J., J. Cryst. Growth 104, 820 (1990).Google Scholar
34Brown, P. W., J. Am. Ceram. Soc. 75, 17 (1992).Google Scholar
35Berry, E. E., J. Inorg. Nucl. Chem. 29, 317 (1967).CrossRefGoogle Scholar
36Berry, E. E., J. Inorg. Nucl. Chem. 29, 1585 (1967).Google Scholar
37Ishikawa, T., Wakamura, M., and Kondo, S., Langmuir 5, 140 (1989).CrossRefGoogle Scholar
38Ji, H. and Marquis, P. M., Biomaterials 13, 744 (1992).CrossRefGoogle Scholar
39Ishikawa, K., Kon, M., Tenshin, S., Ishikawa, Y., and Kuwayama, N., Chem. Express 5, 725 (1990).Google Scholar
40Ishikawa, K., Kon, M., Tenshin, S., and Kuwayama, N., Dent. Mat. J. 9, 58 (1990).Google Scholar
41Orlovsky, V., Yezova, Z., Rodytsheva, G., Koval, E., Suhanova, G., and Tezykova, L., Zurnal Neorg. Chimi 37, 881 (1992), in Russian.Google Scholar
42Bett, J. A. S., Christner, L. G., and Keith Hall, W., J. Am. Ceram. Soc, 5535 (1967).Google Scholar
43Eidelman, N., Brown, W. E., and Meyer, J. L., J. Cryst. Growth 113, 643 (1991).Google Scholar
44Wang, P. E. and Chaki, T. K., J. Mater. Sci.: Mater. Med. 4, 150 (1993).Google Scholar
45Gyu, S., Jin, J. H., and Ho, K. B., Yoop Hakhoechi 25, 631 (1988), in Korean.Google Scholar
46Toriyama, M., Kawamoto, Y., Suzuki, T., Yokogawa, Y., Nishizawa, K., and Nagae, H., J. Ceram. Soc. Jpn. 100, 950 (1992).Google Scholar
47Arends, J., Schuthof, J., van der Linden, W. H., Bennema, P., and van den Berg, P.J., J. Cryst. Growth 46, 213 (1979).Google Scholar
48Chickerur, N. S., Tung, M. S., and Brown, W. E., Calcif. Tissue Int. 32, 55 (1980).Google Scholar
49Doi, Y., Moriwaki, Y., Aoba, T., Takahashi, J., and Joshin, K., Calcif. Tissue Int. 34, 178 (1982).Google Scholar
50Mattel, A. E., Motekaitis, R. J., Fried, A. R., Wilson, J. S., and MacMillan, D. T., Can. J. Chem. 53, 3471 (1975).Google Scholar
51Nelson, D. G. A. and Williamson, B. E., Aust. J. Chem. 35, 715 (1982).Google Scholar
52Driessens, F. C. M., Verbeeck, R. M. H., and Kiekens, P., Z. anorg. allg. Chemie 504, 195 (1983).Google Scholar
53Etz, E. S., Tomazic, B. B., and Brown, W. E., Microbeam Anal., 39 (1986).Google Scholar
54den Hartog, H., Welch, D. O., and Royce, B.S.H., Phys. Status Solidi (B) 53, 201 (1972).Google Scholar
55Park, J. B., Biomaterials Science and Engineering (Plenum Press, New York, 1987).Google Scholar