Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T23:35:56.122Z Has data issue: false hasContentIssue false

Biomimetic gelatine coating for less-corrosive and surface bioactive Mg–9Al–1Zn alloys

Published online by Cambridge University Press:  05 April 2018

Hanuma Reddy Tiyyagura
Affiliation:
Faculty of Mechanical Engineering, University of Maribor, Maribor 2000, Slovenia; and NIT Warangal, National Institute of Technology, Telangana 506004, India
Regina Fuchs-Godec
Affiliation:
Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor 2000, Slovenia
Selestina Gorgieva
Affiliation:
Faculty of Mechanical Engineering, University of Maribor, Maribor 2000, Slovenia
Srinivasan Arthanari
Affiliation:
Magnesium Technology Innovation Centre, School of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
Mantravadi Krishna Mohan*
Affiliation:
NIT Warangal, National Institute of Technology, Telangana 506004, India
Vanja Kokol*
Affiliation:
Faculty of Mechanical Engineering, University of Maribor, Maribor 2000, Slovenia
*
a)Address all correspondence to these authors. e-mail: mkmohan@nitw.ac.in
Get access

Abstract

Magnesium (Mg)-based alloys have been emerging as innovative orthopedic materials due to their light weight and excellent biocompatibility. However, their too rapid degradation and subsequent loss of mechanical integrity before the bone tissue regeneration limits their applications. The presented study introduces in situ cross-linked gelatine (GEL) as a biomimetic coating onto Mg–9Al–1Zn-based alloys by carbodiimide chemistry and dip-coating. The bulk and surface morphology, chemistry, and bioactivity, as well as the corrosion behavior of uncoated and coated alloys were investigated in simulated body fluid (SBF) solution via in vitro testing and using various analytical techniques. The results revealed that the GEL coating mitigates the corrosion (from ∼2.08 to ∼1.19 mm/year) by forming a protective interface layer between the alloy surface and SBF solution, generating a bio-safer alkaline pH environment (pH ≈ 8.3), which minimizes the material resorption. GEL presence also stimulates the mineralization with calcium phosphate compounds, being patterned by its orientation and random coil conformation.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Niinomi, M.: Recent metallic materials for biomedical applications. Metall. Mater. Trans. A 33, 477486 (2002).CrossRefGoogle Scholar
Witte, F.: Reprint of: The history of biodegradable magnesium implants: A review. Acta Biomater. 23, S28S40 (2015).CrossRefGoogle ScholarPubMed
Witte, F.: The history of biodegradable magnesium implants: A review. Acta Biomater. 6, 16801692 (2010).CrossRefGoogle ScholarPubMed
Chen, Y., Xu, Z., Smith, C., and Sankar, J.: Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 10, 45614573 (2014).CrossRefGoogle ScholarPubMed
Pietak, A., Mahoney, P., Dias, G.J., and Staiger, M.P.: Bone-like matrix formation on magnesium and magnesium alloys. J. Mater. Sci. Mater. Med. 19, 407415 (2008).CrossRefGoogle ScholarPubMed
Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindbenberg, A., Wirth, C.J., and Windhagen, H.: In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26, 35573563 (2005).CrossRefGoogle ScholarPubMed
Staiger, M.P., Pietak, A.M., Huadmai, J., and Dias, G.: Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 27, 17281734 (2006).CrossRefGoogle ScholarPubMed
Liu, X., Sun, J., Zhou, F., Yang, Y., Chang, R., Qiu, K., Pu, Z., Li, L., and Zheng, Y.: Micro-alloying with Mn in Zn–Mg alloy for future biodegradable metals application. Mater. Des 94, 95104 (2016).CrossRefGoogle Scholar
Estrin, Y., Nene, S.S., Kashyap, B.P., Prabhu, N., and Al-Samman, T.: New hot rolled Mg–4Li–1Ca alloy: A potential candidate for automotive and biodegradable implant applications. Mater. Lett. 173, 252256 (2016).CrossRefGoogle Scholar
Grünewald, T.A., Rennhofer, H., Hesse, B., Burghammer, M., Stanzl-Tschegg, S.E., Cotte, M., Löffler, J.F., Weinberg, A.M., and Lichtenegger, H.C.: Magnesium from bioresorbable implants: Distribution and impact on the nano- and mineral structure of bone. Biomaterials 76, 250260 (2016).CrossRefGoogle ScholarPubMed
Farraro, K.F., Kim, K.E., Woo, S.L-Y., Flowers, J.R., and McCullough, M.B.: Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering. J. Biomech. 47, 1985 (2014).CrossRefGoogle ScholarPubMed
Zhao, D., Huang, S., Lu, F., Wang, B., Yang, L., Qin, L., Yang, K., Li, Y., Li, W., Wang, W., Tian, S., Zhang, X., Gao, W., Wang, Z., Zhang, Y., Xie, X., Wang, J., and Li, J.: Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head. Biomaterials 81, 8492 (2016).CrossRefGoogle ScholarPubMed
Uddin, M.S., Hall, C., and Murphy, P.: Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants. Sci. Technol. Adv. Mater. 16, 53501 (2015).CrossRefGoogle ScholarPubMed
Sankara Narayanan, T.S.N., Park, I.S., and Lee, M.H.: Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges. Prog. Mater. Sci. 60, 171 (2014).CrossRefGoogle Scholar
Song, Y.L., Liu, Y.H., Yu, S.R., Zhu, X.Y., and Wang, Q.: Plasma electrolytic oxidation coating on AZ91 magnesium alloy modified by neodymium and its corrosion resistance. Appl. Surf. Sci. 254, 30143020 (2008).CrossRefGoogle Scholar
Ren, X., Feng, Y., Guo, J., Wang, H., Li, Q., Yang, J., Hao, X., Lv, J., Ma, N., and Li, W.: Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem. Soc. Rev. 44, 56805742 (2015).CrossRefGoogle ScholarPubMed
Chu, C.L., Han, X., Xue, F., Bai, J., and Chu, P.K.: Effects of sealing treatment on corrosion resistance and degradation behavior of micro-arc oxidized magnesium alloy wires. Appl. Surf. Sci. 271, 271275 (2013).CrossRefGoogle Scholar
Jia, Z., Xiong, P., Shi, Y., Zhou, W., Cheng, Y., Zheng, Y., Xi, T., and Wei, S.: Inhibitor encapsulated, self-healable and cytocompatible chitosan multilayer coating on biodegradable Mg alloy: A pH-responsive design. J. Mater. Chem. B 4, 24982511 (2016).CrossRefGoogle Scholar
Reddy Tiyyagura, H., Rudolf, R., Gorgieva, S., Fuchs-Godec, R., Rao Boyapati, V., Mohan Mantravadi, K., and Kokol, V.: The chitosan coating and processing effect on the physiological corrosion behaviour of porous magnesium monoliths. Prog. Org. Coat. 99, 147156 (2016).CrossRefGoogle Scholar
Wong, H.M., Yeung, K.W., Lam, K.O., Tam, V., Chu, P.K., Luk, K.D., and Cheung, K.M.: A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 31, 20842096 (2010).CrossRefGoogle ScholarPubMed
Chen, X., Zhao, S., Chen, M., Zhang, W., Mao, J., Zhao, Y., Maitz, M.F., Huang, N., and Wan, G.: Sandwiched polydopamine (PDA) layer for titanium dioxide (TiO2) coating on magnesium to enhance corrosion protection. Corros. Sci. 96, 6773 (2015).CrossRefGoogle Scholar
Gong, F., Shen, J., Gao, R., Xie, X., and Luo, X.: Enhanced corrosion resistance of magnesium alloy by a silane-based solution treatment after an in-situ formation of the Mg(OH)2 layer. Appl. Surf. Sci. 365, 268274 (2016).CrossRefGoogle Scholar
Zhen, Z., Xi, T.F., and Zheng, Y.F.: Surface Modification of Magnesium and its Alloys for Biomedical Applications. Volume II: Modification and Coating Techniques (Woodhead Publishing Series in Biomaterials, 2015); pp. 301333. doi: 10.1016/B978-1-78242-078-1.00011-6.CrossRefGoogle Scholar
Kunjukunju, S., Roy, A., Ramanathan, M., Lee, B., Candiello, J.E., and Kumta, P.N.: A layer-by-layer approach to natural polymer-derived bioactive coatings on magnesium alloys. Acta Biomater. 9, 86908703 (2013).CrossRefGoogle ScholarPubMed
Wei, Z., Tian, P., Liu, X., and Zhou, B.: In vitro degradation, hemolysis, and cytocompatibility of PEO/PLLA composite coating on biodegradable AZ31 alloy. J. Biomed. Mater. Res. B Appl. Biomater. 103, 342354 (2015).CrossRefGoogle ScholarPubMed
Ostrowski, N.J., Lee, B., Roy, A., Ramanathan, M., and Kumta, P.N.: Biodegradable poly(lactide-co-glycolide) coatings on magnesium alloys for orthopedic applications. J. Mater. Sci. Mater. Med. 24, 8596 (2013).CrossRefGoogle ScholarPubMed
Jeon, O., Song, S.J., Kang, S-W., Putnam, A.J., and Kim, B-S.: Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(l-lactic-co-glycolic acid) scaffold. Biomaterials 28, 27632771 (2007).CrossRefGoogle ScholarPubMed
Gorgieva, S. and Kokol, V.: Processing of gelatin-based cryogels with improved thermomechanical resistance, pore size gradient, and high potential for sustainable protein drug release. J. Biomed. Mater. Res., Part A 103, 11191130 (2015).CrossRefGoogle ScholarPubMed
Kokubo, T. and Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 29072915 (2006).CrossRefGoogle ScholarPubMed
Gorgieva, S., Strancar, J., and Kokol, V.: Evaluation of surface/interface-related physicochemical and microstructural properties of gelatin 3D scaffolds, and their influence on fibroblast growth and morphology. J. Biomed. Mater. Res., Part A 102, 39863997 (2014).CrossRefGoogle ScholarPubMed
Yang, Z., Jiang, Y., Yu, L., Wen, B., Li, F., Suna, S., and Houa, T.: Preparation and characterization of magnesium doped hydroxyapatite–gelatin nanocomposite. J. Mater. Chem. 15, 1807 (2005).CrossRefGoogle Scholar
Karthika, A., Kavitha, L., Surendiran, M., Kannan, S., and Gopi, D.: Fabrication of divalent ions substituted hydroxyapatite/gelatin nanocomposite coating on electron beam treated titanium: Mechanical, anticorrosive, antibacterial and bioactive evaluations. RSC Adv. 5, 4734147352 (2015).CrossRefGoogle Scholar
Chiono, V., Pulieri, E., Vozzi, G., Ciardelli, G., Ahluwalia, A., and Giusti, P.: Genipin-crosslinked chitosan/gelatin blends for biomedical applications. J. Mater. Sci. Mater. Med. 19, 889898 (2008).CrossRefGoogle ScholarPubMed
Cheng, M., Deng, J., Yang, F., Gong, Y., Zhao, N., and Zhang, X.: Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions. Biomaterials 24, 28712880 (2003).CrossRefGoogle Scholar
Haroun, A.A. and Migonney, V.: Synthesis and in vitro evaluation of gelatin/hydroxyapatite graft copolymers to form bionanocomposites. Int. J. Biol. Macromol. 46, 310316 (2010).CrossRefGoogle ScholarPubMed
Chan, W.Y., Chian, K.S., and Tan, M.J.: In vitro metal ion release and biocompatibility of amorphous Mg67Zn28Ca5 alloy with/without gelatin coating. Mater. Sci. Eng., C 33, 50195027 (2013).CrossRefGoogle ScholarPubMed
Xu, X., Lu, P., Guo, M., and Fang, M.: Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release. Appl. Surf. Sci. 256, 23672371 (2010).CrossRefGoogle Scholar
Vladimirov, B.V., Krit, B.L., Lyudin, V.B., Morozova, N.V., Rossiiskaya, A.D., Suminov, I.V., and Epel’feld, A.V.: Microarc oxidation of magnesium alloys: A review. Surf. Eng. Appl. Electrochem. 50, 195232 (2014).CrossRefGoogle Scholar
Sankara Narayanan, T.S.N., Park, S., and Lee, M.H.: Strategies to improve the corrosion resistance of microarc oxidation coatings on magnesium and its alloys: Implications for biomedical applications. In Surface Modification of Magnesium and its Alloys for Biomedical Applications (2015); pp. 235267. doi: 10.1016/B978-1-78242-078-1.00009-8.CrossRefGoogle Scholar
Gorgieva, S., Štrancar, J., and Kokol, V.: Evaluation of surface/interface-related physicochemical and microstructural properties of gelatin 3D scaffolds, and their influence on fibroblast growth and morphology. J. Biomed. Mater. Res., Part A 102, 39863997 (2014).CrossRefGoogle ScholarPubMed
Gorgieva, S., and Kokol, V.: Collagen- vs. gelatine-based biomaterials and their biocompatibility: Review and perspectives. In Biomaterials Applications for Nanomedicine, R. Pignatello ed., (InTech, 2011). DOI: 10.5772/24118.Google Scholar
Muyonga, J., Cole, C.G., and Duodu, K.: Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chem. 86, 325332 (2004).CrossRefGoogle Scholar
Berzina-Cimdina, L. and Borodajenko, N.: Research of calcium phosphates using fourier transform infrared spectroscopy. In Infrared Spectroscopy - Materials Science, Engineering and Technology, T. Theophile ed., (InTech, 2012).Google Scholar
Rettig, R. and Virtanen, S.: Composition of corrosion layers on a magnesium rare-earth alloy in simulated body fluids. J. Biomed. Mater. Res., Part A 88, 359369 (2009).CrossRefGoogle ScholarPubMed
Wong, H.M., Zhao, Y., Tam, V., Wu, S., Chu, P.K., Zheng, Y., To, M.K., Leung, F.K., Luk, K.D., Cheung, K.M., and Yeung, K.W.: In vivo stimulation of bone formation by aluminum and oxygen plasma surface-modified magnesium implants. Biomaterials 34, 98639876 (2013).CrossRefGoogle ScholarPubMed
Gopi, D., Bhalaji, P.R., Ramya, S., and Kavitha, L.: Evaluation of biodegradability of surface treated AZ91 magnesium alloy in SBF solution. J. Ind. Eng. Chem. 23, 218227 (2015).CrossRefGoogle Scholar
Mukhametkaliyev, T.M., Surmeneva, M.A., Vladescu, A., Cotrut, C.M., Braic, M., Dinu, M., Vranceanu, M.D., Pana, I., Mueller, M., and Surmenev, R.A.A.: Biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance. Mater. Sci. Eng., C 75, 95103 (2017).CrossRefGoogle ScholarPubMed
Arnett, T.R.: Extracellular pH regulates bone cell function. J. Nutr. 138, 415S418S (2008).CrossRefGoogle ScholarPubMed
Sarker, B., Papageorgiou, D.G., Silva, R., Zehnder, T., Gul-E-Noor, F., Bertmer, M., Kaschta, J., Chrissafis, K., Detsch, R., and Boccaccini, A.R.: Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. J. Mater. Chem. B 2, 1470 (2014).CrossRefGoogle ScholarPubMed
Baril, G., Blanc, C., and Pébère, N.: AC Impedance spectroscopy in characterizing time-dependent corrosion of AZ91 and AM50 magnesium alloys characterization with respect to their microstructures. J. Electrochem. Soc. 148, B489 (2001).CrossRefGoogle Scholar
King, A.D., Birbilis, N., and Scully, J.R.: Accurate electrochemical measurement of magnesium corrosion rates; a combined impedance, mass-loss and hydrogen collection study. Electrochim. Acta 121, 394406 (2014).CrossRefGoogle Scholar
Hsu, C.H. and Mansfeld, F.: Concernng the conversion of the constant phase element parameter Y0 into a capacitance. Corrosion 57, 747748 (2001).CrossRefGoogle Scholar
Chen, M., Chen, Y., Zhang, W., Zhao, S., Wang, J., Mao, J., Li, W., Zhao, Y., Huanga, N., and Wan, G.: Controlling the corrosion rate and behavior of biodegradable magnesium by a surface-immobilized ultrathin 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) film. RSC Adv. 6, 1524715259 (2016).CrossRefGoogle Scholar
Lin, D-J., Hung, F-Y., Jakfar, S., and Yeh, M-L.: Tailored coating chemistry and interfacial properties for construction of bioactive ceramic coatings on magnesium biomaterial. Mater. Des. 89, 235244 (2016).CrossRefGoogle Scholar
Córdoba, L.C., Montemor, M.F., and Coradin, T.: Silane/TiO2 coating to control the corrosion rate of magnesium alloys in simulated body fluid. Corros. Sci. 104, 152161 (2016).CrossRefGoogle Scholar
Supplementary material: File

Tiyyagura et al. supplementary material

Figure S1

Download Tiyyagura et al. supplementary material(File)
File 1.1 MB