Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T01:33:37.641Z Has data issue: false hasContentIssue false

Biosilica from diatoms microalgae: smart materials from bio-medicine to photonics

Published online by Cambridge University Press:  13 December 2016

Roberta Ragni
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro,” Bari 70125, Italy
Stefania Cicco
Affiliation:
CNR Istituto di Chimica dei Composti Organometallici, Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro,” Bari 70125, Italy
Danilo Vona
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro,” Bari 70125, Italy
Gabriella Leone
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro,” Bari 70125, Italy
Gianluca M. Farinola*
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro,” Bari 70125, Italy
*
a) Address all correspondence to this author. e-mail: gianlucamaria.farinola@uniba.it
Get access

Abstract

Diatoms microalgae can be regarded as living factories producing nanostructured and mesoporous biosilica shells (frustules) having a highly ordered hierarchical architecture. These unique, morphological, chemical and mechanical properties make diatoms’ biosilica a very attractive nanomaterial for a wide variety of applications. Methods of purification of frustules that preserve their nanostructured morphology have been set up as well as in vivo or in vitro chemical modification protocols of the biosilica with functional molecules to generate biohybrid active materials for photonics, sensing, drug delivery and electronics. Herein we describe, with some selected examples, the great variety of applications envisaged for native and modified frustules, highlighting the material scientists’ benefit to avail of nature in the construction of highly ordered biohybrid architectures for nanotechnology. New concepts for the biotechnological production of nanomaterials are opened by the use of diatoms as living factories.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Werner, D.: The Biology of Diatoms (University of California Press, Berkeley, 1977).Google Scholar
Wetherbee, R.: The diatom glasshouse. Science 298(5593), 547 (2002).CrossRefGoogle ScholarPubMed
Smol, J.P. and Stoermer, E-F.: The Diatoms: Applications for the Environmental and Earth Sciences, 2nd ed. (Cambridge University Press, Cambridge, England, 2010).CrossRefGoogle Scholar
Riedrichs, L., Maier, M., and Hamm, C.: A new method for exact three-dimensional reconstructions of diatom frustules. J. Microsc. 248, 208 (2012).CrossRefGoogle Scholar
Williams, D-M. and Kociolek, P-J.: Pursuit of a natural classification of diatoms: History, monophyly and the rejection of paraphyletic taxa. Eur. J. Phycol. 42, 313 (2007).CrossRefGoogle Scholar
Hildebrand, M.: The molecular basis of diatom biosilica formation. In Biomineralization: From Biology to Biotechnology and Medical Applications, Buerlein, E., ed. (Wiley: Weinheim, 2000); pp. 170.Google Scholar
Thamatrakoln, K., Alverson, A-J., and Hildebrand, M.: Comparative sequence analysis of diatom silicon transporters: Toward a mechanistic model of silicon transport. J. Phycol. 42, 822 (2006).CrossRefGoogle Scholar
Hildebrand, M., Dahlin, K., and Volcani, B-E.: Characterization of a silicon transporter gene family in Cylindrotheca fusiformis: Sequences, expression analysis, and identification of homologs in other diatoms. Mol. Gen. Genet. 260, 480 (1998).CrossRefGoogle ScholarPubMed
Kröger, N., Deutzmann, R., Bergsdorf, C., and Sumper, M.: Species-specific polyamines from diatoms control silica morphology. Proc. Natl. Acad. Sci. U.S.A. 97, 14133 (2000).CrossRefGoogle ScholarPubMed
Sumper, M.: Silica pattern formation in diatoms: Species-specific polyamine biosynthesis. ChemBioChem 7, 1419 (2006).CrossRefGoogle ScholarPubMed
Sumper, M.: A phase separation model for the nanopatterning of diatom biosilica. Science 295, 2430 (2002).CrossRefGoogle ScholarPubMed
Hildebrand, M.: Diatoms, biomineralization processes, and genomics. Chem. Rev. 108, 4855 (2008).CrossRefGoogle ScholarPubMed
Parmisky, I.E. and Golokhvast, K.S.: Silaffins of diatoms: From applied biotechnology to biomedicine. Mar. Drugs 11, 3155 (2013).Google Scholar
Kröger, N., Deutzmann, R., and Sumper, M.: Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 285, 1129 (1999).CrossRefGoogle Scholar
Sumper, M. and Kröger, N.: Silica formation in diatoms: The function of long-chain polyamines and silaffins. J. Mater. Chem. 14, 2059 (2004).CrossRefGoogle Scholar
Belton, D-J., Patwardhan, S-V., Annenkov, V-V., Danilovtseva, E-N., and Perry, C-C.: From biosilicification to tailored materials: Optimizing hydrophobic domains and resistance to protonation of polyamines. Proc. Natl. Acad. Sci. 105, 5963 (2007).CrossRefGoogle Scholar
Jin, R-H. and Levi, R-T.: Biomimetic synthesis of shaped and chiral silica entities templated by organic objective materials. Chem. Eur. J. 20, 7196 (2014).CrossRefGoogle ScholarPubMed
Mann, D-G.: The species concept in diatoms. Phycologia 38, 437 (1999).CrossRefGoogle Scholar
Sims, P-A., Mann, D-G., and Medlin, L-K.: Evolution of the diatoms: Insights from fossil, biological and molecular data. Phycologia 45, 361 (2006).CrossRefGoogle Scholar
Drum, R-W. and Gordon, R.: Star trek replicators and diatom nanotechnology. Trends Biotechnol. 21, 325 (2003).CrossRefGoogle ScholarPubMed
Yang, W., Lopez, P-J., and Rosengarten, G.: Diatoms: Self assembled silica nanostructures, and templates for bio/chemical sensors and biomimetic membranes. Analyst 136, 42 (2011).CrossRefGoogle ScholarPubMed
Fuhrmann, T., Landwehr, S., El Rharbi-Kucki, M., and Sumper, M.: Diatoms as living photonic crystals. Appl. Phys. B. 78, 257 (2004).CrossRefGoogle Scholar
Martin, K.R.: The chemistry of silica and its potential health benefits. J. Nutr. Health Aging 11, 94 (2007).Google ScholarPubMed
Wachter, H., Lechleitner, M., Artner-Dworzak, E., Hausen, A., Jarosch, E., Widner, B., Patsch, J., Pfeiffer, K., and Fuchs, D.: Diatomaceous earth lowers blood cholesterol concentrations. Eur. J. Med. Res. 3, 211 (1998).Google ScholarPubMed
Korunic, K. and Mackay, A.: Grain surface-layer treatment of diatomaceous earth for insect control. Arh. Hig. Rada Toksikol. 51, 1 (2000).Google ScholarPubMed
Danil de Namor, A.F., Gamouz, E.L., Frangie, S., Martinez, V., Valiente, L., and Webb, O.A.: Turning the volume down on heavy metals using tuned diatomite. A review of diatomite and modified diatomite for the extraction of heavy metals from water. J. Hazard. Mater. 241, 14 (2012).CrossRefGoogle ScholarPubMed
Bennett, D.C., Yee, A., Rhee, Y.J., and Cheng, K.M.: Effect of diatomaceous earth on parasite load, egg production, and egg quality of free-range organic laying hens. Poult. Sci. 201190, 1416 (2011).CrossRefGoogle Scholar
De Stefano, L., Rea, I., Rendina, I., De Stefano, M., and Moretti, L.: Lensless light focusing with the centric marine diatom Coscinodiscus walesii. Opt. Express 15(26), 18082 (2007).CrossRefGoogle ScholarPubMed
Noyes, J., Sumper, M., and Vukusic, P.: Light manipulation in a marine diatom. J. Mater. Res. 23(12), 3229 (2008).CrossRefGoogle Scholar
Kieu, K., Li, C., Fang, Y., Cohoon, G., Herrera, O.D., Hildebrand, M., Sandhage, K.H., and Norwood, R.A.: Structure-based optical filtering by the silica microshell of the centric marine diatom Coscinodiscus wailesii. Opt. Express 22(13), 15992 (2014).CrossRefGoogle ScholarPubMed
Yamanaka, S., Yano, R., Usami, H., Hayashida, N., Ohguchi, M., Takeda, H., and Yoshino, K.: Optical properties of diatom silica frustule with special reference to blue light. J. Appl. Phys. 103(7), 074701 (2008).CrossRefGoogle Scholar
Ferrara, M.A., Dardano, P., De Stefano, L., Rea, I., Coppola, G., Rendina, I., Congestri, R., Antonucci, A., De Stefano, M., and De Tommasi, E.: Optical properties of diatom nanostructured biosilica in Arachnoidiscus sp.: Micro-optics from mother nature. Plos One 9(7), 1 (2014).CrossRefGoogle ScholarPubMed
Desclés, J., Vartanian, M., Harrak, A-E., Quinet, M., Bremond, N., Sapriel, G., Bibette, J., and Lopez, P-J.: New tools for labeling silica in living diatoms. New Phytol. 177(3), 822 (2008).CrossRefGoogle ScholarPubMed
Vona, D., Lo Presti, M., Cicco, S.R., Palumbo, F., Ragni, R., and Farinola, G.M.. Light emitting silica nanostructures by surface functionalization of diatom algae shells with a triethoxysilane-functionalized π-conjugated fluorophore. MRS Adv. (2015). doi: 10.1557/adv.2015.21.Google Scholar
Kucki, M. and Fuhrmann-Lieker, T.: Staining diatoms with rhodamine dyes: Control of emission colour in photonic biocomposites. J. R. Soc., Interface. 9(69), 727 (2012).CrossRefGoogle ScholarPubMed
Losic, D., Yang, Y., Sinn, M., Simovic, S., Thierrya, B., and Addai-Mensaha, J.: Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles: Toward magnetically guided drug microcarriers with biologically derived morphologies. Chem. Commun. 46, 6323 (2010).CrossRefGoogle ScholarPubMed
Sinn, M., Bariana, M., Yu, Y., Addai-Mensah, J., and Losic, D.: Surface-functionalized diatom microcapsules for drug delivery of water-insoluble drugs. J. Biomater. Appl. 28(2), 163 (2013).Google Scholar
Le, T.D.H., Bonani, W., Speranza, G., Sglavo, V., Ceccato, R., Maniglio, D., Motta, A., and Migliaresi, C.: Processing and characterization of diatom nanoparticles and microparticles as potential source of silicon for bone tissue engineering. Mater. Sci. Eng., C 59, 471479 (2016).CrossRefGoogle ScholarPubMed
Cicco, S.R., Vona, D., De Giglio, E., Cometa, S., Mattioli-Belmonte, M., Palumbo, F., Ragni, R., and Farinola, G.M.: Chemically modified diatoms biosilica for bone cell growth with combined drug-delivery and antioxidant properties. ChemPlusChem 80, 1104 (2015).CrossRefGoogle ScholarPubMed
Vona, D., Urbano, L., Bonifacio, M.A., De Giglio, E., Cometa, S., Mattioli-Belmonte, M., Palumbo, F., Ragni, R., Cicco, S.R., and Farinola, G.M.: Data from two different culture conditions of Thalassiosira weissflogii diatom and from cleaning procedures for obtaining monodisperse nanostructured biosilica. Data in Brief 8, 312 (2016).CrossRefGoogle ScholarPubMed
Delalat, B., Sheppard, V.C., Ghaemi, S.R., Rao, S., Prestidge, C.A., McPhee, G., Rogers, M-L., Donoghue, J.F., Pillay, V., Johns, T.G., Kroger, N., and Voelcker, N.H.: Targeted drug delivery using genetically engineered diatom biosilica. Nat. Commun. 6(8791), 111 (2015).CrossRefGoogle ScholarPubMed
Bonilla, C.E.P., Trujillo, S., Demirdögen, B., Perilla, J.E., Elcin, Y.M., and Ribelles, J.L.G.: New porous polycaprolactone–silica composites for bone regeneration. Mater. Sci. Eng., C 40, 418 (2014).CrossRefGoogle Scholar
Wang, S., Wang, X., Draenert, F.G., Albert, O., Schroder, H.C., Mailander, V., Mitov, G., and Muller, W.E.G.: Bioactive and biodegradable silica biomaterial for bone regeneration. Bone 67, 292 (2014).CrossRefGoogle ScholarPubMed
Gale, D.K., Gutu, T., Jiao, J., Chang, C.H., and Rorrer, G.L.: Photoluminescence detection of biomolecules by antibody-functionalized diatom biosilica. Adv. Funct. Mater. 19, 926 (2009).CrossRefGoogle Scholar
Townley, H.E., Woon, K.L., Payne, F.P., White-Cooper, H., and Parker, A.R.: Modification of the physical and optical properties of the frustule of the diatom Coscinodiscus wailesii by nickel sulfate. Nanotechnology 18, 295101 (2007).CrossRefGoogle Scholar
Lee, M., Lee, S., Lee, J.H., Lim, H.W., Seong, G.H., Lee, E.K., Chang, S.I., Oh, C.H., and Choo, J.: Highly reproducible immunoassay of cancer markers on a gold-patterned microarray chip using surface-enhanced Raman scattering imaging. Biosens. Bioelectron. 26, 2135 (2011).CrossRefGoogle ScholarPubMed
Haes, A.J. and Van Duyne, R.P.: A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 124, 10596 (2002).CrossRefGoogle ScholarPubMed
Yang, J., Zhen, L., Ren, F., Campbell, J., Rorrer, G.L., and Wang, A.X.: Ultra-sensitive immunoassay biosensors using hybrid plasmonic-biosilica nanostructured materials. J. Biophoton. 8, 659 (2015).CrossRefGoogle ScholarPubMed
Jeffryes, C., Solanki, R., Rangineni, Y., Wang, W., Chang, C-H., and Rorrer, G.L.: Electroluminescence and photoluminescence from nanostructured diatom frustules containing metabolically inserted germanium. Adv. Mater. 20, 2633 (2008).CrossRefGoogle Scholar
Jeffryes, C., Gutu, T., Jiao, J., and Rorrer, G-L.: Two-stage photobioreactor process for the metabolic insertion of nanostructured germanium into the silica microstructure of the diatom Pinnularia sp. Mat. Sci. Eng., C 28(1), 107 (2008).CrossRefGoogle Scholar
Toster, J., Iyer, K.S., Xiang, W., Rosei, F., Spiccia, L., and Raston, C.L.: Diatom frustules as light traps enhance DSSC efficiency. Nanoscale 5(3), 873 (2013).CrossRefGoogle ScholarPubMed
Sandhage, K-H., Dickerson, M-B., Huseman, P-M., Zalar, F-M., Carroll, M-C., Rondon, M-R., and Sandhage, E-C.: A novel hybrid route to chemically–tailored, three–dimensional oxide nanostructures: The basic (bioclastic and shape–preserving inorganic conversion) process. Ceram. Eng. Sci. Proc. 23(4), 653 (2008).CrossRefGoogle Scholar
Sandhage, K-H., Dickerson, M-B., Huseman, P-M., Caranna, M-A., Clifton, J-D., Bull, T-A., Heibel, T-J., Overton, W-R., and Schoenwaelder, M-E-A.: Novel, bioclastic route to self-assembled, 3D, chemically tailored meso/nanostructures: Shape-preserving reactive conversion of biosilica (diatom) microshells. Adv. Mater. 14(6), 429 (2002).3.0.CO;2-C>CrossRefGoogle Scholar
Bao, Z., Weatherspoon, M.R., Shian, S., Cai, Y., Graham, P.D., Allan, S.M., Ahmad, G., Dickerson, M.B., Church, B.C., Kang, Z., Abernathy, H.W. III, Summers, C.J., Liu, M., and Sandhage, K.H.: Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 446, 172 (2007).CrossRefGoogle ScholarPubMed
Chandrasekaran, S., Sweetman, M-J., Kant, K., Skinner, W., Losic, D., Nann, T., and Voelcker, N-H.: Silicon diatom frustules as nanostructured photoelectrodes. Chem Commun. 50(72), 1044110444 (2014).CrossRefGoogle ScholarPubMed
Li, F., Xing, Y., Huang, M., Li, K.L., Yu, T.T., Zhang, Y.X., and Losic, D.: MnO2 nanostructures with three-dimensional (3D) morphology replicated from diatoms for high-performance supercapacitors. J. Mater. Chem. A 3, 7855 (2015).CrossRefGoogle Scholar
Pan, Z., Lerch, S-J.L., Xu, L., Li, X., Chuang, Y-J., Howe, J-Y., Mahurin, S-M., Dai, S., and Hildebrand, M.: Electronically transparent graphene replicas of diatoms: a new technique for the investigation of frustule morphology. Sci. Reports 4, 1 (2014).Google ScholarPubMed
Losic, D., Mitchell, J-G., and Voelcker, N-H.: Fabrication of gold nanostructures by templating from porous diatom frustules. New J. Chem. 30, 908 (2006).CrossRefGoogle Scholar