Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T22:17:09.373Z Has data issue: false hasContentIssue false

(Bi,Sb)2Te3-PbTe chalcogenide alloys: Impact of the cooling rate and sintering parameters on the microstructures and thermoelectric performances

Published online by Cambridge University Press:  16 May 2011

Alexandre Jacquot*
Affiliation:
Fraunhofer Institute for Physical Measurement Technique, D–79110 Freiburg, Germany
Thomas Jürgen
Affiliation:
Institute of Complex Materials, IFW Dresden, D–01069 Dresden, Germany
Joachim Schumann
Affiliation:
Institute for Solid State Research, IFW Dresden, D–01069 Dresden, Germany
Martin Jägle
Affiliation:
Fraunhofer Institute for Physical Measurement Technique, D–79110 Freiburg, Germany
Harald Böttner
Affiliation:
Fraunhofer Institute for Physical Measurement Technique, D–79110 Freiburg, Germany
Thomas Gemming
Affiliation:
Institute of Complex Materials, IFW Dresden, D–01069 Dresden, Germany
Jürgen Schmidt
Affiliation:
Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM, Institutsteil Dresden, 01277 Dresden, Germany
Dirk Ebling
Affiliation:
Fachhochschule Düsseldorf, Forschung und Transfer Präsidium, D-40225 Düsseldorf, Germany
*
a)Address all correspondence to this author. e-mail: Alexandre.Jacquote@ipm-fraunhofer.de
Get access

Abstract

(Bi,Sb)2Te3 + 4 mol%PbTe was quenched in water and on a rotating copper wheel (melt spinning). It was found that PbTe was immiscible in (Bi,Sb)2Te3 when the material is quenched in water and that the thermoelectric figure of merit increases by annealing. Natural nanostructures (nns) were found in melt-spun (Bi,Sb)2Te3, whereas they were hard to detect in (Bi,Sb)2Te3 alloyed with PbTe. There is a correlation between the orientation of the strain field and the nns. Within the grains of melt-spun (Bi,Sb)2Te3 alloyed with PbTe, the chemical composition was homogeneous. An enrichment of Pb was found at the grain boundaries. Quenched (Bi,Sb)2Te3 alloyed with 0.3 wt%PbTe have been spark plasma sintered (SPS). After optimization, the Seebeck coefficients of the melt-spun SPS (MS-SPS) materials were larger than for materials quenched in water and sintered (QW-SPS) materials. In addition, the mobility increases with the carrier concentration in MS-SPS materials, whereas it decreases in QW-SPS materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tritt, T.M.: Harvesting energy through thermoelectrics: Power generation and cooling. MRS Bull. 31, 188 (2006).CrossRefGoogle Scholar
2.Böttner, H., Ebling, D.G., Jacquot, A., König, J., Kirste, L., and Schmidt, J.: Structural and mechanical properties of sparc plasma sintered n- and p-type bismuth telluride alloys. Phys. Status Solidi RRL 1(6), 235 (2007).CrossRefGoogle Scholar
3.Ebling, D.G., Jacquot, A., Jägle, M., Böttner, H., Kühn, U., and Kirste, L.: Structure and thermoelectric properties of nanocomposite bismuth telluride prepared by melt spinning or by partially alloying with IV–VI compounds. Phys. Status Solidi RRL 1(6), 238 (2007).CrossRefGoogle Scholar
4.Dado, B., Gelbstein, Y., Mogilansky, D., Ezersky, V. and Dariel, M.P.: Structural evolution following spinodal decomposition of the pseudoternary compound (Pb0.3Sn0.1Ge0.6). J. Electron. Mater. 39(9), 2165 (2010).CrossRefGoogle Scholar
5.Gelbstein, Y., Dado, B., Yehuda, O.B., Sadia, Y., Dashevsky, Z., and Dariel, M.P.: High thermoelectric figure of merit and nanostructuring in bulk p-type Gex(SnyPb1-y)1-xTe alloys following a spinodal decomposition reaction. Chem. Mater. 22, 1054 (2010).CrossRefGoogle Scholar
6.Dresselhaus, M.S., Chen, G., Ren, Z.F., Dresselhaus, G., Henry, A., and Fleurial, J.-P.: New composite thermoelectric materials for energy harvesting applications. JOM 61(4), 86 (2009).CrossRefGoogle Scholar
7.Peranio, N., Eibl, O., and Nurnus, J.: Structural and thermoelectric properties of epitaxially grown Bi2Te3 thin films and superlattices. J. Appl. Phys. 100, 114306 (2006).CrossRefGoogle Scholar
8.Glazov, V.M. and Yatmanov, Yu.V.: Thermoelectric properties of semiconducting solid solutions Bi2Te2.4Se0.6 and Bi0.52Sb1.48Te3 prepared by ultrafast cooling melts. Moscow Institute of Electronics. Translated from Izvestiya Akademii Nauk SSSR. Neorganicheskie Materialy, Vol. 22, No. 1, pp. 36–40, January, 1986. Original 23 (1984) (article submitted).Google Scholar
9.Koukharenkou, E., Fretya, N., Shepelevich, V.G., and Tedenac, C.: Electrical properties of Bi2-xSbxTe3 materials obtained by ultrarapid quenching. J. Alloy. Comp. 327, 1 (2001).CrossRefGoogle Scholar
10.Ebling, D.G., Jacquot, A., Böttner, H., Kirste, L., and Schmidt, J.: Influence of group IV-Te alloing on nanocompiste structure and thermoelectric properties of Bi2Te3 compounds. J. Electron. Mater. 38(7), 1450 (2009).CrossRefGoogle Scholar
11.Jiang, J., Chen, L., Bai, S., Yao, Q., and Wang, Q.: Fabrication and thermoelectric performance of textured n-type Bi2(Te, Se)3 by spark plasma sintering. Mater. Sci. Eng., B 117, 334 (2005).CrossRefGoogle Scholar
12.Lim, C.H., Kim, K.T., Kim, Y.H., Lee, Y.S., Lee, C.H., and Lee, C.H.: Improvement of the figure-of-merit by formation of crystallographic texture in Bi2Te3-based thermoelectric compounds. J. Electroceram. 17, 894 (2006).CrossRefGoogle Scholar
13.Chen, Z.-C., Suzuki, K., Miura, S., Nishimura, K., and Ikeda, K.: Microstructural features and deformation-induced lattice defects in hot-extruded Bi2Te3 thermoelectric compound. Mater. Sci. Eng., A 500, 70 (2009).CrossRefGoogle Scholar
14.Ma, Y., Hao, Q., Poudel, B., Lan, Y., Yu, B., Wang, D., Chen, G., and Ren, Z.: Structure study of bulk nanograined thermoelectric bismuth antimony telluride. Nano Lett. 8(8), 2580 (2008).CrossRefGoogle Scholar
15.Xie, W., He, J., Kang, H.J., Tang, X., Zhu, S., Laver, M., Wang, S., Copley, J.R.D., Brown, C.M., Zhang, Q., and Tritt, T.M.: Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi, Sb)2Te3 nanocomposites. Nano Lett. 10, 3283 (2010).CrossRefGoogle Scholar
16.Xie, W., Tang, X., Yan, Y., Zhang, Q., and Tritt, T.M.: High thermoelectric performance BiSbTe alloy with unique low-dimensional structure. J. Appl. Phys. 105, 113713 (2009).CrossRefGoogle Scholar
17.Peranio, N. and Eibl, O.: Quantitative EDX microanalysis of Bi2Te3 in the TEM. Phys. Status Solidi A 204(10), 3243 (2007).CrossRefGoogle Scholar
18.Stadelmann, P.: EMS—a software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21, 131 (1987).CrossRefGoogle Scholar
19.Thomas, J. and Gemming, T.: ELDISCA C#—a new version of the program for identifying electron diffraction patterns, in EMC 2008, Vol. I, (Aachen, 2008), pp. 231232.Google Scholar
20.Stasova, M.M. and Abrikosov, N.K.: The radiographical analysis of the solid solution in system Bi-Sb-Te. Izvestiya Akademii Nauk SSSR Neorganicheskie Materialy. 6, 1090 (1970).Google Scholar
21.Jacquot, A., Pernau, H.-F., König, J., Nussel, U., Bartel, M., Ebling, D., and Jaegle, M.: Measurement uncertainties in thermoelectric materials, in Proceedings of the 8th European Conference on Thermoelectrics, Como, Italy, September 22–24, 2010, P1.Google Scholar
22.Lange, P.W.: Ein Vergleich zwischen Bi2Ti3 und Bi2Te2S. Naturwissenschaften. 27, 133 (1939).CrossRefGoogle Scholar
23.Peranio, N. and Eibl, O.: Structural modulations in Bi2Te3. J. Appl. Phys. 103, 024314 (2008).CrossRefGoogle Scholar
24.Xie, W.J., Tang, X.F., Chen, G., Jin, Q., and Zhang, Q.J.: Nanostructure and thermoelectric properties of p-type Bi0.5Sb1.5Te3 compound prepared by melt spinning technique, in Proceedings of the 26th International Conference on Thermoelectrics, Jeju Island, Korea, 2007, pp. 2326Google Scholar
25.Goldsmid, H.J.: Thermoelectric Refrigeration (Plenum Press, New York, 1964).CrossRefGoogle Scholar
26.Lundstrom, M.: Fundamentals of Carrier Transport (Cambridge University Press, Cambridge, UK, 2000).CrossRefGoogle Scholar
27.Ng, H.M., Doppalapudi, D., Moustakas, T.D., Weimann, N.G., and Eastman, L.F.: The role of dislocation scattering in n-type GaN films. Appl. Phys. Lett. 73(6), 821 (1998).CrossRefGoogle Scholar
28.Jacquot, A., König, J., Bayer, B., Ebling, D., Schmidt, J., and Jaegle, M.: Coupled theoretical and experimental investigation of the role of impurity level and concentration in Bi2Te3 and PbTe-based materials at high temperature, in Proceedings of the 8th European Conference on Thermoelectrics, Como, Italy, September 22–24, 2010, pp. 112.Google Scholar
29.Ridley, B.K.: Reconciliation of the Conwell-Weisskopf and Brooks-Herring formulae for charged-impurity scattering in semiconductors: Third-body interference. J. Phys. C Solid State Phys. 10, 1589 (1977).CrossRefGoogle Scholar
30.Chazalviel, J.-N.: Coulomb Screening by Mobile Charges: Application to Materials Science, Chemistry and Biology (Birkhäuser, Basel, 1998).Google Scholar
31.Tritt, T.M.: Thermal Conductivity: Theory, Properties, and Applications (Kluwer Academic/Plenum Publishers, New York, 2004).CrossRefGoogle Scholar
32.Kaiblinger-Grujin, G., Kosina, H., Köpf, Ch., and Selberherr, S.: Influence of dopant spiecies on electron mobility in heavily doped semiconductors. Mater. Sci. Forum 258263, 939 (1997).CrossRefGoogle Scholar
33.Jacquot, A., Farag, N., Jaegle, M., Bobeth, M., Schmidt, J., Ebling, D., and Böttner, H.: Thermoelectric properties as a function of the electronic band structure and the microstructure of textured materials. J. Electron. Mater. 39(9), 1861 (2010).CrossRefGoogle Scholar