Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-02T22:28:19.939Z Has data issue: false hasContentIssue false

Brittle to Ductile Transition Dependence upon the Transition Pressure Value of Semiconductors in Micromachining

Published online by Cambridge University Press:  31 January 2011

Renato G. Jasinevicius
Affiliation:
Departamento de Engenharia Mecanica, Escola de Engenharia de São Carlos, Universidade de São Paulo, CP 359, CEP 13560-970, São Carlos, São Paulo, Brazil
Paulo S. Pizani
Affiliation:
Departamento de Fisica, Universidade Federal de São Carlos, CP 676, 13565-905, São Carlos, São Paulo, Brazil
Jaime G. Duduch
Affiliation:
Departamento de Engenharia Mecanica, Escola de Engenharia de São Carlos, Universidade de São Paulo, CP 359, CEP 13560-970, São Carlos, São Paulo, Brazil
Get access

Abstract

Single-point diamond turning tests were carried out in two different [001]-oriented semiconductors, InSb and Si single crystals. The analysis of the conditions in which the machining is in ductile or brittle mode indicates that the plasticity presented by semiconductor crystals during micromachining can be correlated to the value of the transition pressure. It is shown that the ductility presented by different semiconductor single crystals is inversely related to the transition pressure value of the material.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Pethica, J.B., Hutchings, R., and Oliver, W.C., Philos. Mag. A 48, 593 (1983).CrossRefGoogle Scholar
2.Bhushan, B. and Koinkar, V.N., Appl. Phys. Lett. 64, 1653 (1994).CrossRefGoogle Scholar
3.Morris, J.C. and Callaham, D.L., J. Mater. Res. 9, 2907 (1994).CrossRefGoogle Scholar
4.Blake, P.N. and Scattergood, R.O., J. Am. Ceram. Soc. 73, 939 (1990).CrossRefGoogle Scholar
5.Gridneva, I.V., Milman, Y.V., and Trefilov, M., Phys. Status Solidi A 14, 177 (1972).CrossRefGoogle Scholar
6.Minomura, S. and Drickamer, H.G., J. Phys. Chem. Solids 23, 451 (1962).CrossRefGoogle Scholar
7.Jameison, J.C., Science 139, 762 (1963).CrossRefGoogle Scholar
8.Pharr, G.M., Oliver, W.C., and Harding, D.S., J. Mater. Res. 6, 1129 (1991).CrossRefGoogle Scholar
9.Cahn, R.W., Nature 357, 645 (1992).CrossRefGoogle Scholar
10.Callahan, D.L. and Morris, J.C., J. Mater. Res. 7, 1614 (1992).CrossRefGoogle Scholar
11.Clarke, D.R., Kroll, M.C., Kirchner, P.D., and Cook, R.F., Phys. Rev. Lett. 60, 2156 (1988).CrossRefGoogle Scholar
12.Hu, J.Z., Markle, L.D., Menoni, C.S., and Spain, I.L., Phys. Rev. B 34, 4679 (1986).CrossRefGoogle Scholar
13.Gerk, A.P. and Tabor, D., Nature 271, 732 (1978).CrossRefGoogle Scholar
14.Minowa, K. and Sumino, K., Phys. Rev. Lett. 69, 320 (1992).CrossRefGoogle Scholar
15.Tanikella, B.V., Somasekhar, A.H., Sowers, A.T., Nemanich, R.J., and Scattergood, R.O., Appl. Phys. Lett. 69, 2870 (1996).CrossRefGoogle Scholar
16.Puttick, K.E., Whitmore, L.C., Gee, A.E., and Chao, C.L., Philos. Mag. A 69, 91 (1994).CrossRefGoogle Scholar
17.Shibata, T., Ono, A., Kurihara, K., Makino, E., and Ikeda, M., Appl. Phys. Lett. 65, 2553 (1994).CrossRefGoogle Scholar
18.Morris, J.C., Callahan, D.L., Kulik, J., Patten, J.A., and Scattergood, R.O., J. Am. Ceram. Soc. 78, 2015 (1995).CrossRefGoogle Scholar
19.Chelikowski, J.R., Phys. Rev. B 35, 1174 (1987).CrossRefGoogle Scholar
20.Jasinevicius, R.G., Duduch, J.G., Porto, A.J.V, and Gee, A.E., Proceedings of the 13th Annual Meeting of the American Society for Precision Engineering (St. Louis, MO, 1998), Vol. 18, pp. 140144.Google Scholar
21.Gupta, M.C. and Ruoff, A.L., J. Appl. Phys. 51, 1072 (1980).CrossRefGoogle Scholar
22.Gilman, J.J., J. Mater. Res. 7, 535 (1992).CrossRefGoogle Scholar
23.Handbook of Chemestry and Physics, 76th ed., edited by David R. Lide (CRC Press, Boca Raton, FL, 19951996).Google Scholar