Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T07:29:58.423Z Has data issue: false hasContentIssue false

Caloric effects and phase transitions in ferromagnetic–ferroelectric composites xLa0.7Pb0.3MnO3–(1−x)PbTiO3

Published online by Cambridge University Press:  13 December 2013

Ekaterina Mikhaleva
Affiliation:
Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia; and Siberian Federal University, Krasnoyarsk 660079, Russia
Igor Flerov*
Affiliation:
Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia; and Siberian Federal University, Krasnoyarsk 660079, Russia
Andrey Kartashev
Affiliation:
Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia
Mikhail Gorev
Affiliation:
Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia; and Siberian Federal University, Krasnoyarsk 660079, Russia
Alexander Cherepakhin
Affiliation:
Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia
Klara Sablina
Affiliation:
Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia
Nataly Mikhashenok
Affiliation:
Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia
Nikita Volkov
Affiliation:
Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia; and Siberian Federal University, Krasnoyarsk 660079, Russia
Alexander Shabanov
Affiliation:
Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia
*
a)Address all correspondence to this author. e-mail: flerov@iph.krasn.ru
Get access

Abstract

Ceramic volumetric composites xLa0.7Pb0.3MnO3–(1−x)PbTiO3 (x = 0.18 and 0.85) were prepared. X-ray investigations have shown that rather low sintering temperature (800 °C) has allowed us to avoid the reaction and interdiffusion between two initial phases. Heat capacity, thermal expansion, and intensive magnetocaloric effect were measured in a wide temperature range. The sample composition has a low influence on temperatures of the ferromagnetic and ferroelectric phase transitions in composites. Electro- and barocaloric effects were determined by analysis in the framework of thermodynamic theory, electric equation of state, Maxwell relationships, and entropy–temperature–pressure phase diagram. Multicaloric efficiency of composites is discussed and compared with that of initial La0.7Pb0.3MnO3 and PbTiO3 compounds. Variation of a relationship between components can significantly increase both barocaloric and magnetocaloric efficiency of compositional material due to the mechanical stress appearing between grains of different ferroic phases under magnetic field.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schmid, H.: Multi-ferroic magnetoelectrics. Ferroelectrics 162, 317 (1994).CrossRefGoogle Scholar
Nan, C-W., Liu, L., Cai, N., Zhai, J., Ye, Y., Lin, Y.H., Dong, L.J., and Xiong, C.X.: A three-phase magnetoelectric composite of piezoelectric ceramics, rare-earth iron alloys, and polymer. Appl. Phys. Lett. 81, 3831 (2002).CrossRefGoogle Scholar
Eerenstein, W., Mathur, N.D., and Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442, 759 (2006).CrossRefGoogle ScholarPubMed
Zvezdin, K. and Pyatakov, A.P.: Phase transitions and the giant magnetoelectric effect in multiferroics. Physics-Uspekhi 47, 416 (2004).CrossRefGoogle Scholar
Bichurin, M.I. and Petrov, V.M.: Magnetoelectric effect in magnetostriction-piezoelectric multiferroics. Low Temp. Phys. 36, 544 (2010).CrossRefGoogle Scholar
Tishin, M. and Spichkin, Y.: The Magnetocaloric Effect and its Application (Bristol, Philadelphia, 2003).CrossRefGoogle Scholar
Annaorazov, M.P., Nikitin, S.A., Tyurin, A.L., Asatryan, K.A., and Dovletov, A.K.: Anomalously high entropy change in FeRh alloy. J. Appl. Phys. 79, 1689 (1996).CrossRefGoogle Scholar
de Medeiros, L.G. Jr., de Oliveira, N.A., and Troper, A.: Barocaloric and magnetocaloric effects in La(Fe0.89Si0.11)13. J. Appl. Phys. 103, 113909 (2008).CrossRefGoogle Scholar
Manosa, L., Gonzalez-Alonso, D., Planes, A., Bonnot, E., Barrio, M., Tamarit, J.L., Aksoy, S., and Acet, M.: Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. Nat. Mater. 9, 478 (2010).CrossRefGoogle ScholarPubMed
Mikhaleva, E., Flerov, I., Gorev, M., Molokeev, M., Cherepakhin, A., Kartashev, A., Mikhashenok, N., and Sablina, K.: Caloric characteristics of PbTiO3 in the temperature range of the ferroelectric phase transition. Phys. Solid State 54, 1832 (2012).CrossRefGoogle Scholar
Kartashev, V., Mikhaleva, E.A., Gorev, M.V., Bogdanov, E.V., Cherepakhin, A.V., Sablina, K.A., Mikhashonok, N.V., Flerov, I.N., and Volkov, N.V.: Thermal properties, magneto- and baro-caloric effects in La0.7Pb0.3MnO3 single crystal. J. Appl. Phys. 113, 073901 (2013).CrossRefGoogle Scholar
Kartashev, I., Flerov, N., Volkov, N., and Sablina, K.: Adiabatic calorimetric study of the intense magnetocaloric effect and the heat capacity of (La0.4Eu0.6)0.7Pb0.3MnO3. Phys. Solid State 50, 2115 (2008).CrossRefGoogle Scholar
Kartashev, I., Flerov, N., Volkov, N., and Sablina, K.: Heat capacity and magnetocaloric effect in manganites (La1−yEuy)0.7Pb0.3MnO3 (y:0.2; 0.6). J. Magnetism Magnet. Mater. 322, 622 (2010).CrossRefGoogle Scholar
Gridnev, S. and Kalgin, A.: Phase transitions in xPbZr0.53Ti0.47O3-(1−x)Mn0.4Zn0.6Fe2O4 magnetoelectric composites. Phys. Solid State 51, 1458 (2009).CrossRefGoogle Scholar
Murakami, M., Chang, K-S., Aronova, M.A., Lin, C-L., Yu, M.H., Simpers, J.H., Wuttig, M., Takeuchi, I., Gao, C., Hu, B., Lofland, S.E., Knauss, L.A., and Bendersky, L.A.: Tunable multiferroic properties in nanocomposite PbTiO3-CoFe2O4 epitaxial thin films. Appl. Phys. Lett. 87, 112901 (2005).CrossRefGoogle Scholar
Palkar, V. and Malik, S.: Observation of magnetoelectric behavior at room temperature in Pb(FexTi1−x)O3. Solid State Commun. 134, 783 (2005).CrossRefGoogle Scholar
Mikhaleva, E., Flerov, I., Bondarev, V., Gorev, M., Vasiliev, A., and Davydova, T.: Phase transitions and caloric effects in ferroelectric solid solutions of ammonium and rubidium hydrosulfates. Phys. Solid State 53, 510 (2011).CrossRefGoogle Scholar
Alexandrov, K.S. and Flerov, I.N.: The regions of applicability of the thermodynamic theory of structural phase transitions close to the tricritical point. Sov. Phys. Solid State 21, 195 (1979).Google Scholar
Strässle, T., Furrer, A., Donni, A., and Komatsubara, T.: Barocaloric effect: The use of pressure for magnetic cooling in Ce3Pd20Ge6. J. Appl. Phys. 91, 8543 (2002).CrossRefGoogle Scholar
Flerov, I., Gorev, M., Tressaud, A., and Laptash, N.: Perovskite-like fluorides and oxyfluorides: Phase transitions and caloric effects. Crystall. Rep. 56, 9 (2011).CrossRefGoogle Scholar
Flerov, I., Gorev, M., Fokina, V., Bovina, A., Bogdanov, E., Pogoreltsev, E., andLaptash, N.: Disorder and phase transitions in oxyfluoride (NH4)3Ta(O2)2F4. J. Fluor. Chem. 132, 713 (2011).CrossRefGoogle Scholar
Rocco, D.L., Silva, R.A., Carvalho, A.M.G., Coelho, A.A., Andreeta, J.P., and Gama, S.: Magnetocaloric effect of La0.8Sr0.2MnO3 compound under pressure. J. Appl. Phys. 97, 10M317 (2005).CrossRefGoogle Scholar
Sun, Y., Kamarad, J., Arnold, Z., Kou, Z-q., and Cheng, Z-h.: Tuning of magnetocaloric effect in a La0.69Ca0.31MnO3 single crystal by pressure. Appl. Phys. Lett. 88, 102505 (2006).CrossRefGoogle Scholar
Castillo-Villa, P.O., Manosa, L., Planes, A., Soto-Parra, D.E., Sanchez-Llamazares, J.L., Flores-Zuniga, H., and Frontera, C.: Elastocaloric and magnetocaloric effects in Ni-Mn-Sn(Cu) shape-memory alloy. J. Appl. Phys. 113, 053506 (2013).CrossRefGoogle Scholar