Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T20:35:47.140Z Has data issue: false hasContentIssue false

Characterization of Reduced-pressure Chemical Vapor Deposition Polycrystalline Silicon Germanium Deposited at Temperatures ≤550 °C

Published online by Cambridge University Press:  31 January 2011

Sherif Sedky
Affiliation:
Department of Engineering Physics, Faculty of Engineering, Cairo University, 1221 Giza, Egypt
Ann Witvrouw
Affiliation:
Interuniversity Microelectrics Center (IMEC), Kapeldreef 75, B3001 Leuven, Belgium
Matty Caymax
Affiliation:
Interuniversity Microelectrics Center (IMEC), Kapeldreef 75, B3001 Leuven, Belgium
Annelies Saerens
Affiliation:
Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
Paul Van Houtte
Affiliation:
Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
Get access

Abstract

This paper investigates the possibility of reducing the deposition temperature of polycrystalline silicon germanium to a level compatible with complementary metal-oxide semiconductor (CMOS) post processing. To achieve this goal, the exact wafer temperature during deposition was experimentally determined and it was found to be 30 °C lower than the reactor setting temperature. The deposition temperature was reduced from 625 to 500 °C. The impact of varying the deposition pressure from 10 to 760 torr and the germanium content from 15% to 100% was investigated. X-ray diffraction spectroscopy and transmission electron microscopy showed that the SixGe1−x films deposited at an actual wafer temperature of 520 °C are polycrystalline for germanium contents as low as 15%. Also, it was shown that the deposition conditions can be adjusted to yield a low tensile stress at an actual wafer temperature of 520 °C, which is suitable for integrating surface micromachined micro-electromechanical systems on top of standard CMOS wafers with Al interconnects.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mizuno, J., Nottmeyer, K., Kobayashi, T., Minami, K., and Esashi, M., International Conf. Solid State Sens. Actuators (Elsevier, Chicago, IL, 1997) 2, 1197.Google Scholar
Geiger, W., Folkmer, B., Sobe, U., Sandmaier, H., and Lang, W., International Conf. Solid State Sens. Actuators 2, (Elsevier, Chicago, IL, 1997) 1129.Google Scholar
Sedky, S., Fiorini, P., Baert, K., Hermans, L., and Mertens, R., IEEE Trans. Electron Devices 46, 675 (1999).CrossRefGoogle Scholar
Eaton, W.P. and Smith, J.H., Proc. SPIE 2448, 258 (1995).CrossRefGoogle Scholar
Hsu, P.C., Klastrangelo, C., and Wise, K., (IEEE, New York, 1998), pp. 580585.Google Scholar
Singh, J., Chandra, S., and Chand, A., Sens. Actuators A 77, 133 (1999).CrossRefGoogle Scholar
King, T.J., Pfiester, J.R., Shott, J.D., McVittie, J.P., and Saraswat, K., IEDM Tech. Digest Cat. No. 90CH2 865–4, 253 (1990).Google Scholar
Hong, C.H., Park, C.Y., and Kim, H.J., J. Appl. Phys. 71, 5427 (1992).CrossRefGoogle Scholar
Sedky, S., Fiorini, P., Caymax, M., Loreti, S., Baert, K., Hermans, L., and Mertens, R., J. Microelectromechanical Systems 7, 365 (1998).CrossRefGoogle Scholar
Franke, A.E., Bilie, D., Chang, D.T., Jones, P.T., King, T-J., Howe, R.T., and Johnson, G.C., in Transducers ‘99, Proc. 1999 Int. Conf. Solid-State Sens. Actuators, (IEEE, Sendai, Japan), pp. 530533.Google Scholar
Franke, A.E., Jiao, Y., Wu, M.T., King, T-J., and Howe, R.T., Solid-State Sens. Actuator Workshop Tech. Digest (Hilton Head Island, SC, 2000), pp. 1821.Google Scholar
Sedky, S., Witvrouw, A., Saerens, A., Houtte, P. Van, Poortmans, J., and Baert, K., J. Mater. Res. 16, 2607 (2001).CrossRefGoogle Scholar
King, T.J. and Saraswat, K., J. Electrochem. Soc. 141, 2235 (1994).CrossRefGoogle Scholar
Wee, A., Huan, C., Thong, P., and Tan, K., Corrosion Sci. 36, 9 (1994).CrossRefGoogle Scholar
Plaksina, Y., Kobyakov, V., and Chelnokova, L., Soviet Powder Metall. Metal. Ceram. 12, 218 (1973).CrossRefGoogle Scholar
Dismukes, J.P., Ekstrom, L., Steigmeier, E.F., Kudam, I., and Beers, D.S., J. Appl. Phys. 35, 2899 (1964).CrossRefGoogle Scholar
Hall, L., J. Appl. Phys. 43, 4615 (1972).CrossRefGoogle Scholar
Matsu, N., Fujiwara, H.Miyoshi, T., and Koyanagi, T., IEEE Electron Device Lett. 17, 56 (1996).CrossRefGoogle Scholar
Uchida, H., Takechi, K., Nishida, S., and Kaneko, S., Jpn. J. Appl. Phys. Part 1 30, 3691 (1991).CrossRefGoogle Scholar
Youngjoo, Y., Young, S., Jong, U., and Geunho, K., Proc. SPIE Int. Soc. Opt. Eng. 3878, 398 (1999).Google Scholar
Sedky, S., Witvrouw, A., Bender, H., and Baert, K., IEEE Trans. Electron Devices 48, 377 (2001).CrossRefGoogle Scholar
Kamins, T. and Meyer, D., Appl. Phys. Lett. 59, 178 (1991).CrossRefGoogle Scholar
Cao, M., Wang, A.W., and Saraswat, K.C., Process Physics and Modeling in Semiconductor Technology, edited by Srinivasan, G.R., Taniguichi, K., and Murthy, C.S., (Electrochemical Society Proceedings Series, Pennington, NJ, 1993), pp. 350356.Google Scholar
Caymax, M., Loo, R., Brijs, B., Vandervorst, W., Howard, D., Kimura, K., and Nakajima, K., in Epitaxy and Applications of Si-Based Heterostructures, edited by Fitzgerald, E.A., Houghton, D.C., and Mooney, P.M. (Mater. Res. Soc. Symp., Warrendale, PA, 1998), p. 339.Google Scholar
Kamins, T., Appl. Phys. Lett. 61, 90 (1992).CrossRefGoogle Scholar
Kamins, T., Polycrystalline Silicon for Integrated Circuit Applications (Kluwer Academic, New York, 1988), Chap. 2.CrossRefGoogle Scholar
www.engr.unl.edu/∼web360/inclass/inclass7.html shows the phase diagram.Google Scholar
Noyan, I.C. and Cohen, J.B., Residual Stress: Measurements by Diffraction and Interpretation (Springer-Verlag, New York, 1987).CrossRefGoogle Scholar
Krulevitch, P., Nguyen, T., Johnson, G., Howe, R., Wenk, H., and Gronsky, R., “LPCVD polycrystalline silicon thin films: the evolution of structure, texture and stress,” Evolution of thin film and surface microstructure symposium, edited by Thompson, C.V., Tsro, J.Y., and Srolovitz, D.J. (Mater. Res. Soc., Pittsburgh, PA, 1991) p. 167–72.Google Scholar
Sedky, S., Fiorini, P., Caymax, M., Verbist, A., and Baert, C., Sens. Actuators A 66, 193 (1998).CrossRefGoogle Scholar
Sedky, S., Witvrouw, A., and Baert, K., 11th Int. Conf. Solid State Sens. Actuators, June 11–14, Germany (S. Pringes, Germany, 2001), pp. 988991.Google Scholar