Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T23:35:06.172Z Has data issue: false hasContentIssue false

Chemical bonding and mechanical properties of M2AC (M = Ti, V, Cr, A = Al, Si, P, S) ceramics from first-principles investigations

Published online by Cambridge University Press:  31 January 2011

Ting Liao
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and Graduate School of Chinese Academy of Sciences, Beijing 100039, China
Jingyang Wang*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016; and International Centre for Materials Physics, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Yanchun Zhou
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
*
a) Address all correspondence to this author. e-mail: jywang@imr.ac.cn
Get access

Abstract

MAX-phase carbides (M is an early transition metal, A is an A-group element) exhibit an interesting bonding characteristic of alternative stacking of strong M–C bonds and relatively weak MA bonds in one direction. In the present first-principles total energy calculations, we establish the relationship between mechanical properties and electronic structure for ternary M2AC (M = Ti, V, Cr, A = Al, Si, P, S) carbides. By systematically tuning elements on the M and A sites, pronounced enhancements of bulk modulus, elastic stiffness, and ideal shear strength are achieved in V-containing V2AC (A = Al, Si, P, and S) carbides. It is suggested that tailoring on the A site is more efficient than on the M site in strengthening the mechanical properties of studied serial carbides. The results highlight a general trend for tailor-made mechanical properties of ternary M2AC carbides by control of chemical bonding.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Barsoum, M.W.: The M (N+1)AX (N) phases: A new class of solids: Thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201 (2000)Google Scholar
2.Wang, J.Y., Zhou, Y.C.: Dependence of elastic stiffness on electronic band structure of nanolaminate M 2AlC (M = Ti, V, Nb, and Cr) ceramics. Phys. Rev. B 69, 214111 (2004)CrossRefGoogle Scholar
3.Wang, J.Y., Zhou, Y.C.: Polymorphism of Ti3SiC2 ceramic: First-principles investigations. Phys. Rev. B 69, 144108 (2004)CrossRefGoogle Scholar
4.Liao, T., Wang, J.Y., Zhou, Y.C.: Deformation modes and ideal strengths of ternary layered Ti2AlC and Ti2AlN from first-principles calculations. Phys. Rev. B 73, 214109 (2006)CrossRefGoogle Scholar
5.Sun, Z.M., Ahuja, R., Schneider, J.M.: Theoretical investigation of the solubility in (MxM'(2–x))AlC (M and M' = Ti, V, Cr). Phys. Rev. B 68, 224112 (2003)CrossRefGoogle Scholar
6.Kumar, R.S., Rekhi, S., Cornelius, A.L., Barsoum, M.W.: Compressibility of Nb2AsC to 41 GPa. Appl. Phys. Lett. 86, 111904 (2005)CrossRefGoogle Scholar
7.Liao, T., Wang, J.Y., Zhou, Y.C.: Superior mechanical properties of Nb2AsC to those of other layered ternary carbides: A first-principles study. J. Phys. Condens. Matter 18, L527 (2006)CrossRefGoogle Scholar
8.Hug, G.: Electronic structures of and composition gaps among the ternary carbides Ti2MC. Phys. Rev. B 74, 184113 (2006)CrossRefGoogle Scholar
9.Segall, M.D., Lindan, P.L.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C.: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717 (2002)Google Scholar
10.Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990)Google Scholar
11.Perdew, J.P., Cherary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C.: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992)Google Scholar
12.Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 16, 1748 (1977)Google Scholar
13.Dronskowski, R., Blöchl, P.E.: Crystal orbital Hamilton populations (COHP)-energy resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617 (1993)CrossRefGoogle Scholar
14.Blaha, P., Schwarz, K., Luitz, J.: Computer Code WIEN2k(Karlheinz Schwarz, Technical University Wien Vienna 1999)Google Scholar
15.Tank, R., Jepsen, O., Burkhardt, A., Andersen, O.K.: The Stuttgart TB-LMTO-ASA Program version 47 (MPI für Festkörperforschung, Stuttgart Germany 1996)Google Scholar
16.Milman, V., Warren, M.C.: Elasticity of hexagonal BeO. J. Phys. Condens. Matter 13, 241 (2001)CrossRefGoogle Scholar
17.Jhi, S.H., Louie, S.G., Cohen, M.L., Morris, J.W. Jr.: Mechanical instability and ideal shear strength of transition metal carbides and nitrides. Phys. Rev. Lett. 87, 075503 (2001)CrossRefGoogle ScholarPubMed
18.Jhi, S.H., Ihm, J., Louie, S.G., Cohen, M.L.: Electronic mechanism of hardness enhancement in transition-metal carbonitrides. Nature 399, 132 (1999)CrossRefGoogle Scholar
19.Clatterbuck, D.M., Chrzan, D.C., Morris, J.W. Jr.: The ideal strength of iron in tension and shear. Acta Mater. 51, 2271 (2003)Google Scholar
20.Roundy, D., Krenn, C.R., Cohen, M.L., Morris, J.W. Jr.: Ideal shear strengths of fcc aluminum and copper. Phys. Rev. Lett. 82, 2713 (1999)CrossRefGoogle Scholar
21.Ogata, S., Hirosaki, N., Koce, C., Shibutani, Y.: An ab initio study of the ideal tensile and shear strength of single-crystal beta-Si3N4. J. Mater. Res. 18, 1168 (2003)Google Scholar
22.Zhang, Y., Sun, H., Chen, C.F.: Structural deformation, strength, and instability of cubic BN compared to diamond: A first-principles study. Phys. Rev. B 73, 144115 (2006)CrossRefGoogle Scholar
23.Mattesini, M., Matar, S.F.: Density-functional theory investigation of hardness, stability, and electron-energy-loss spectra of carbon nitrides with C11N4 stoichiometry. Phys. Rev. B 65, 075110 (2002)CrossRefGoogle Scholar
24.Wang, S., Gudipati, R., Rao, A.S., Bostelmann, T.J., Shen, Y.G.: First-principles calculations for the elastic properties of nanostructured superhard TiN/SixNy superlattices. Appl. Phys. Lett. 91, 081916 (2007)CrossRefGoogle Scholar
25.Farber, L., Barsoum, M.W., Zavaliangos, A., El-Raghy, T.: Dislocations and stacking faults in Ti3SiC2. J. Am. Ceram. Soc. 81, 1677 (1998)CrossRefGoogle Scholar
26.Barsoum, M.W., Farber, L., El-Raghy, T.: Dislocations, kink bands, and room-temperature plasticity of Ti3SiC2. Metall. Mater. Trans. A 30, 1727 (1999)CrossRefGoogle Scholar
27.Manoun, B., Gulve, R.P., Saxena, S.K., Gupta, S., Barsoum, M.W., Zha, C.S.: Compression behavior of M 2AlC (M = Ti, V, Cr, Nb, and Ta) phases to above 50 GPa. Phys. Rev. B 73, 024110 (2006)CrossRefGoogle Scholar
28.Fang, C.M., Ahuja, R., Eriksson, O.: Prediction of MAX phases, VN+1SiCN (N = 1, 2), from first-principles theory. J. Appl. Phys. 101, 013511 (2007)Google Scholar
29.Sun, Z.M., Li, S., Ahuja, R., Schneider, J.M.: Calculated elastic properties of M 2AlC (M = Ti, V, Cr, Nb, and Ta). Solid State Commun. 129, 589 (2004)CrossRefGoogle Scholar
30.Kulkarni, S.R., Vennila, R.S., Phatak, N.A., Saxena, S.K., Zha, C.S., El-Raghy, T., Barsoum, M.W., Luo, W., Ahuja, R.: Study of Ti2SC under compression up to 47 GPa. J. Alloys Compd. 448, L1 (2008)Google Scholar
31.Vitos, L., Korzhavyi, P.A., Johansson, B.: Elastic property maps of austenitic stainless steels. Phys. Rev. Lett. 88, 055501 (2002)CrossRefGoogle ScholarPubMed
32.Music, D., Sun, Z.M., Schneider, J.M.: Structure and bonding of (MSbP)-Sb-2 (M=Ti, Zr, Hf). Phys. Rev. B 71, 092102 (2005)Google Scholar
33.Music, D., Schneider, J.M.: Elastic properties of MFe3N (M = Ni, Pd, Pt) studied by ab initio calculations. Appl. Phys. Lett. 88, 031914 (2006)Google Scholar