Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T19:43:45.008Z Has data issue: false hasContentIssue false

Chemical solution deposition of biaxially oriented (Ba,Sr)TiO3 thin films on 〈100〉 Ni

Published online by Cambridge University Press:  03 March 2011

R. J. Ong
Affiliation:
Microsystem Materials, Tribology and Technologies Department, Sandia National Laboratories, Albuquerque, New Mexico 87185–1411; and Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
J. T. Dawley
Affiliation:
Microsystem Materials, Tribology and Technologies Department, Sandia National Laboratories, Albuquerque, New Mexico 87185–1411
P. G. Clem
Affiliation:
Microsystem Materials, Tribology and Technologies Department, Sandia National Laboratories, Albuquerque, New Mexico 87185–1411
Get access

Abstract

Biaxially oriented Ba1−xSrxTiO3 (BST) thin films were fabricated under a highly reducing atmosphere (oxygen partial pressure ∼10−18 atm) on base metal substrates (〈100〉 Ni) using a fluorinated chemical solution deposition method. The degree of film orientation was investigated with respect to film annealing temperature and composition (x = 0, 0.33, 0.5, 0.67, 1). The solution synthesis route included fluorinated solvents, donor-dopants, and chelating agents for control of orientation, defect chemistry, and morphology. Free-energy and phase diagrams guided solution development using halide addition to avoid intermediate BaCO3 formation and instead produce direct crystallization of BaTiO3-type materials from BaF2. The degree of (200) orientation of BST films deposited on 〈100〉 Ni substrates displayed a compositional dependence for 0 < x < 1, with a maximum orientation Lotgering factor approaching unity. Low-temperature (500 °C) crystallization of highly oriented films was demonstrated for solution-derived BST on Ni, which may have enabling materials integration implications for capacitors and other applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Pontes, F.M., Araujo, E.B., Leite, E.R., Eiras, J.A., Longo, E., Varela, J.A., and Pereira-Da-Silva, M.A., J. Mater. Res. 15, 1176 (2000).CrossRefGoogle Scholar
2.Sengupta, L.C. and Sengupta, S., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 792 (1997).CrossRefGoogle Scholar
3.Siegal, M.P., Clem, P.G., Dawley, J.T., Ong, R.J., Rodriguez, M.A., and Overmyer, D.L., Appl. Phys. Lett. 80, 2710 (2002).CrossRefGoogle Scholar
4.Basceri, C., Streiffer, S.K., Kingon, A.I., and Waser, R., J. Appl. Phys. 82, 2497 (1997).CrossRefGoogle Scholar
5.Goux, L., Gervais, M., Gervais, F., Champeaux, C., and Catherinot, A., Int. J. Inorg. Mater. 3, 839 (2001).CrossRefGoogle Scholar
6.Zhu, X.H., Chong, N., Chan, H.L.W., Choy, C.L., Wong, K.H., Liu, Z., and Ming, N., Appl. Phys. Lett. 80, 3376 (2002).CrossRefGoogle Scholar
7.Yuzyuk, Y.I., Alyoshin, V.A., Zakharchenko, I.N., Sviridov, E.V., Almeida, A., and Chaves, M.R., Phys. Rev. B 6513, 4107 (2002).Google Scholar
8.Cantoni, C., Christen, D.K., Heatherly, L., Kowalewski, M.M., List, F.A., Goyal, A., Ownby, G.W., Zehner, D.M., Kang, B.W., and Kroeger, D.M., J. Mater. Res. 17, 2549 (2002).CrossRefGoogle Scholar
9.Wang, G.S., Cheng, J.G., Meng, X.J., Yu, J., Lai, Z.Q., Tang, J., Guo, S.L., Chu, J.H., Li, G., and Lu, Q.H., Appl. Phys. Lett. 78, 4172 (2001).CrossRefGoogle Scholar
10.Wu, W.B., Peng, D.W., Ding, Y.P., and Meng, Z.Y., Mater. Sci. Semicond. Process 4, 673 (2001).CrossRefGoogle Scholar
11.Mizuno, Y., Okino, Y., Kohzu, N., Chazono, H., and Kishi, H., Jpn. J. Appl. Phys. 37, 5227 (1998).CrossRefGoogle Scholar
12.Maria, J-P., Cheek, K., Streiffer, S., Kim, S-H., Dunn, G., and Kingon, A.I., J. Am. Ceram. Soc. 84, 2436 (2001).CrossRefGoogle Scholar
13.Dawley, J.T. and Clem, P.G., Appl. Phys. Lett. 81, 1 (2002).CrossRefGoogle Scholar
14.Outzourhit, A., Trefny, J.U., Kito, T., and Yara, B., J. Mater. Res. 10, 1411 (1995).CrossRefGoogle Scholar
15.Dawley, J.T., Ong, R.J., and Clem, P.G., J. Mater. Res. 17, 1678 (2002).CrossRefGoogle Scholar
16.Hoffmann, S. and Waser, R., J. Eur. Ceram. Soc. 19, 1339 (1999).CrossRefGoogle Scholar
17.Specht, E.D., Goyal, A., Lee, D.F., List, F.A., Kroeger, D.M., Paranthaman, M., Williams, R.K., and Christen, D.K., Supercond. Sci. Technol. 11, 945 (1998).CrossRefGoogle Scholar
18.Norton, D.P., Goyal, A., Budai, J.D., Christen, D.K., Kroeger, D.M., Specht, E.D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C.E., Lee, D.F., Sales, B.C., and List, F.A., Science 274, 755 (1996).CrossRefGoogle Scholar
19.U.S. Patent Nos. 5 739 086 (14 April 1998), 5 741 377 (21 April 1998), and 5 898 020 (27 April 1999).Google Scholar
20.Assink, R.A. and Schwartz, R.W., Chem. Mater. 5, 511 (1993).CrossRefGoogle Scholar
21.Clem, P.G., Rodriguez, M., Voigt, J.A., and Ashley, C.S., U.S. Patent No. 6 231 666 (15 May 2001).Google Scholar
22.Lotgering, F.K., J. Inorg. Nucl. Chem. 9, 113 (1959).CrossRefGoogle Scholar
23.Miller, K.T. and Lange, F.F., J. Mater. Res. 6, 2387 (1991).CrossRefGoogle Scholar
24.Frey, M.H. and Payne, D.A., Chem. Mater. 7, 123 (1995).CrossRefGoogle Scholar
25.Smith, J.A., Cima, M.J., and Sonnenberg, N., IEEE Trans. Appl. Supercon. 9, 1531 (1999).CrossRefGoogle Scholar
26.Solovyov, V.F., Wiesmann, H.J., Wu, L-J., Zhu, Y., and Suenaga, M., Appl. Phys. Lett. 76, 1911 (2000).CrossRefGoogle Scholar
27.Honjo, T., Nakamura, Y., Teranishi, R., Fuji, H., Shibata, J., Izumi, T., and Shiohara, Y., IEEE Trans. Appl. Supercon. 13, 2516 (2003).CrossRefGoogle Scholar
28.Dworkin, A.S. and Bredig, M.A., Oak Ridge National Laboratory Chemistry Division Annual Report, Tech. Rept. ORNL-3994 (1966), p. 102.Google Scholar
29.Advances in Epitaxy and Endotaxy, edited by Schneider, H.G., Ruth, V., and Kormany, T. (Elsevier, New York, 1990), Vol. 53.Google Scholar
30.Ali, N.J., Clem, P.G., and Milne, S.J., J. Mater. Sci. Lett. 14, 837 (1995)CrossRefGoogle Scholar