Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-02T19:07:40.116Z Has data issue: false hasContentIssue false

Chemical synthesis and characterization of MnO2-coated Co nanoparticles

Published online by Cambridge University Press:  31 January 2011

Dongliang Zhao
Affiliation:
Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081, China
Zhongyuan Liu
Affiliation:
State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
Get access

Abstract

Co/MnO2 particles are synthesized by a simple two-step chemical process. It includes the reduction of Co2+ cations to Co nanoparticles with sodium borohydride (NaBH4) in aqueous solution, followed by coating the sample with a surface layer of MnO2. The coating is accomplished using a simple decomposition reaction, in aqueous KMnO4 solution with acid environment at room temperature. Transmission electron microscopy (TEM) analysis demonstrates that the core of the particles is composed of Co clusters that have a narrow size distribution. The strong interface effect of the Co/MnO2 particles is also studied by the detection of exchange bias phenomena of hysteresis curves.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dorman, J.L., Fiorani, D., Tronc, E.Magnetic relaxation in fine-particle systems. Adv. Chem. Phys. 98, 283 (1997)Google Scholar
2.Leslie-Pelecky, D.L., Rieke, R.D.Magnetic properties of nanostructured materials. Chem. Mater. 8, 1770 (1996)CrossRefGoogle Scholar
3.Kodama, R.H., Makhlouf, S.A., Berkowitz, A.E.Finite size effects in antiferromagnetic NiO nanoparticles. Phys. Rev. Lett. 79, 1393 (1997)CrossRefGoogle Scholar
4.Makhlouf, S.A., Parker, F.T., Spada, F.E., Berkowitz, A.E.Magnetic anomalies in NiO nanoparticles. J. Appl. Phys. 81, 5561 (1997)CrossRefGoogle Scholar
5.Peng, D.L., Sumiyama, K., Hihara, T., Yamamuro, S., Konno, T.J.Magnetic properties of monodispersed Co/CoO clusters. Phys. Rev. B 61, 3103 (2000)CrossRefGoogle Scholar
6.Peng, D.L., Hihara, T., Sumiyama, K., Morikawa, H.Structural and magnetic characteristics of monodispersed Fe and oxide-coated Fe cluster assemblies. J. Appl. Phys. 92, 3075 (2002)CrossRefGoogle Scholar
7.Tian, Z.M., Yuan, S.L., Liu, L., Yin, S.Y., Jia, L.C., Li, P., Huo, S.X., Li, J.Q.Exchange bias training effect in NiFe2O4/NiO nanocomposites. J. Phys. D: Appl. Phys. 42, 035008 (2009)CrossRefGoogle Scholar
8.Ceylan, A., Baker, C.C., Hasanain, S.K., Shah, S.I.Effect of particle size on the magnetic properties of core-shell structured nanoparticles. J. Appl. Phys. 100, 034301 (2006)CrossRefGoogle Scholar
9.Iglesias, Ò., Batlle, X., Labarta, A.Microscopic origin of exchange bias in core/shell nanoparticles. Phys. Rev. B 72, 212401 (2005)CrossRefGoogle Scholar
10.Zeng, H., Sun, S.H., Li, J., Wang, Z.L.Tailoring magnetic properties of core/shell nanoparticles. Appl. Phys. Lett. 85, 792 (2004)CrossRefGoogle Scholar
11.Meaklejohn, W.H., Bean, C.P.New magnetic anisotropy. Phys. Rev. 102, 1413 (1956)CrossRefGoogle Scholar
12.Gangopadhyay, S., Hadjipanayis, G.C., Sorensen, C.M., Klabunde, K.J.Exchange anisotropy in oxide passivated Co fine particles. J. Appl. Phys. 73, 6964 (1993)CrossRefGoogle Scholar
13.Lana, C., Morales, M., Serna, C., Vázquez, M.Exchange anisotropy in Co80Ni20/oxide nanoparticles. Nanotechnology 14, S293 (2004)CrossRefGoogle Scholar
14.Del Bianco, L., Fiorani, D., Testa, A.M., Bonetti, E., Signorini, L.Field-cooling dependence of exchange bias in a granular system of Fe nanoparticles embedded in an Fe oxide matrix. Phys. Rev. B 70, 052401 (2004)CrossRefGoogle Scholar
15.Domingo, N., Testa, A.M., Fiorani, D., Binns, C., Baker, S., Tejada, J.Exchange bias in Co nanoparticles embedded in an Mn matrix. J. Magn. Magn. Mater. 316, 155 (2007)CrossRefGoogle Scholar
16.Punnoose, A., Magnone, H., Seehra, M.S., Bonevich, J.Bulk to nanoscale magnetism and exchange bias in CuO nanoparticles. Phys. Rev. B 64, 174420 (2001)CrossRefGoogle Scholar
17.Black, C.T., Murray, C.B., Sandstrom, R.L., Sun, S.Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science 290, 1131 (2000)CrossRefGoogle ScholarPubMed
18.Tzitzios, V., Basina, G., Gjoka, M., Alexandrakis, V., Georgakilas, V., Niarchos, D., Boukos, N., Petridis, D.Chemical synthesis and characterization of hcp Ni nanoparticles. Nanotechnology 17, 3750 (2006)CrossRefGoogle Scholar
19.Wang, D.P., Sun, D.B., Yu, H.Y., Meng, H.M.Morphology controllable synthesis of nickel nanopowders by chemical reduction process. J. Cryst. Growth 310, 1195 (2008)CrossRefGoogle Scholar
20.Gleiter, H.Nanocrystalline materials. Prog. Mater. Sci. 33, 223 (1989)CrossRefGoogle Scholar
21.Koch, C.C.Synthesis of nanostructured materials by mechanical milling: Problems and opportunities. Nanostruct. Mater. 9, 13 (1997)CrossRefGoogle Scholar
22.Chang, W.K., Young, H.K., Hyun, G.C., Hae, W.K., Young, S.K.Synthesis and characterization of highly magnetized nanocrystalline Co30Fe70 alloy by chemical reduction. J. Phys. Chem. B 110, 24418 (2006)Google Scholar
23.Huang, K.C., Sheryl, H.E.Synthesis of iron nanoparticles via chemical reduction with palladium ion seeds. Langmuir 23, 1419 (2007)CrossRefGoogle ScholarPubMed
24.Roy, A., Srinivas, V., Ram, S., Rao, T.V.C.The effect of silver coating on magnetic properties of oxygen-stabilized tetragonal Ni nanoparticles prepared by chemical reduction. J. Phys. Condens. Matter 19, 346220 (2007)CrossRefGoogle Scholar
25.Shen, C.M., Hui, C., Yang, T.Z., Xiao, C.W., Chen, S.T., Ding, H., Gao, H.J.Monodispersive CoPt nanoparticles synthesized using chemical reduction. Chin. Phys. Lett. 25, 1479 (2008)Google Scholar
26.Winkler, E., Zysler, R.D., Vasquez Mansilla, M., Fiorani, D.Surface anisotropy effects in NiO nanoparticles. Phys. Rev. B 72, 132409 (2005)CrossRefGoogle Scholar
27.Biasi, E.D., Ramos, C.A., Zysler, R.D.Large surface magnetic contribution in amorphous ferromagnetic nanoparticles. Phys. Rev. B 65, 144416 (2002)CrossRefGoogle Scholar
28.Del Bianco, L., Fiorani, D., Testa, A.M., Bonetti, E., Savini, L., Signoretti, S.Magnetothermal behavior of a nanoscale Fe/Fe oxide granular system. Phys. Rev. B 66, 174418 (2002)CrossRefGoogle Scholar
29.Hansen, M.F., Morup, S.Estimation of blocking temperatures from ZFC/FC curves. J. Magn. Magn. Mater. 203, 214 (1999)CrossRefGoogle Scholar
30.Peddis, D., Mansilla, M.V., Morup, S., Cannas, C., Musinu, A., Piccaluga, G., Orazio, F., Lucari, F., Fiorani, D.Spin-canting and magnetic anisotropy in ultrasmall CoFe2O4 nanoparticles. J. Phys. Chem. B 112, 8507 (2008)CrossRefGoogle ScholarPubMed
31.Ambrose, T., Chien, C.L.Dependence of exchange field and coercivity on cooling field in NiFeCoO bilayers. J. Appl. Phys. 83, 7222 (1998)CrossRefGoogle Scholar