Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T01:11:16.310Z Has data issue: false hasContentIssue false

Comparative Study of Thickness Dependence of Critical Current Density of Yba2Cu3O7–δ on (100) SrTiO3 and on Rolling-assisted Biaxially Textured Substrates

Published online by Cambridge University Press:  31 January 2011

B. W. Kang
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831
A. Goyal
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831
D. F. Lee
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831
J. E. Mathis
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831
E. D. Specht
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831
P. M. Martin
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831
D. M. Kroeger
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831
M. Paranthaman
Affiliation:
Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
S. Sathyamurthy
Affiliation:
Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

We investigated the dependence of critical current density (Jc) on thickness of Yba2Cu3O7−δ (YBCO) films grown by pulsed laser deposition on (100) SrTiO3 (STO) and on rolling-assisted biaxially textured substrates (RABiTS). The thickness of YBCO films varied from 0.19 to 3 μm. The highest Jcs of 5.3 and 2.6 MA/cm2 at 77 K, self-field were obtained for 0.19-μm YBCO films on STO and RABiTS, respectively. Jc was found to decrease exponentially with YBCO thickness on both substrates. However, the results suggest different mechanisms are responsible for the Jc reduction in the two cases. On STO, growth of a-axis grains within c-axis films and broadening of the in-plane texture were observed in thick films. On RABiTS, degradation in cube texture as well as development of a porous surface morphology were found to correlate with film thickness.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wu, X.D., Foltyn, S.R., Arendt, P.N., Blumenthal, W.R., Campbell, I.H., Cotton, J.D., Coulter, J.Y., Hults, W.L., Maley, M.P., Safar, H.F., and Smith, J.L., Appl. Phys. Lett. 67, 2397 (1995).CrossRefGoogle Scholar
Goyal, A., Norton, D.P., Christen, D.K., Specht, E.D., Paranthaman, M., Kroeger, D.M., Budai, J.D., He, Q., List, F.A., Feenstra, R., Kerchner, H.R., Lee, D.F., Harfield, E., Martin, P.M., Mathis, J., and Park, C., Appl. Supercon. 4, 403 (1996).CrossRefGoogle Scholar
Goyal, A., Norton, D.P., Budai, J.D., Paranthaman, M., Specht, E.D., Kroeger, B.M., Christen, D.K., He, A., Saffian, B., List, F.A., Lee, D.F., Martin, P.M., Klabunde, C.E., and Sikka, V.K., Appl. Phys. Lett. 69, 1795 (1996).CrossRefGoogle Scholar
Ijima, Y., Hosaka, M., Tanabe, N., Sadakata, N., Saito, T., Kohno, O., and Takeda, K., Appl. Supercond. 4, 475 (1996).CrossRefGoogle Scholar
Mogro-Campero, A., Turner, L.G., Hall, E.L., and Lewis, N., in High-Temperature Superconductors: Fundamental Properties and Novel Materials Processing, edited by Christen, D., Narayan, J., and Schneemeyer, L. (Mater. Res. Soc. Symp. Proc. 169, Pittsburgh, PA, 1990), p. 703.Google Scholar
Luborsky, F.E., Kwasnick, R.F., Borst, K., Garbauskas, M.F., Hall, E.L., and Curran, M.J., J. Appl. Phys. 64, 6388 (1988).CrossRefGoogle Scholar
Foltyn, S.R., Tiwari, P., Dye, R.C., Le, M.Q., and Wu, X.D., Appl. Phys. Lett. 63, 1848 VVII (1993).CrossRefGoogle Scholar
Sievers, S., Mattieis, F., Krebs, H.U., and Freyhardt, H.C., J. Appl. Phys. 78, 5545 (1995).CrossRefGoogle Scholar
Miura, S., Hashimoto, K., Wang, F., Enomoto, Y., and Morishita, T., Physica C 278, 201 (1997).CrossRefGoogle Scholar
Ignatiev, A., Zhong, Q., Chou, P.C., Zhang, X., Liu, J.R., and Chu, W.K., Appl. Phys. Lett. 70, 1474 (1997).CrossRefGoogle Scholar
Solovyov, V.F., Weisemann, H.J., Wu, L.J., Suenaga, M., and Feenstra, R., IEEE Trans. Appl. Supercond. 4, 429 (1999).Google Scholar
Foltyn, S.R., Jia, Q.X., Arendt, P.N., Kinder, L., Fan, Y., and Smith, J.F., Appl. Phys. Lett. 75, 3692 (1999).CrossRefGoogle Scholar
Paranthaman, M., Park, C., Cui, X., Goyal, A., Lee, D.F., Martin, P.M., Verebelyi, Norton, D.P., Christen, D.K., and Kroeger, D.M., Mater. Res. 15, 2647 (2000).CrossRefGoogle Scholar
Goyal, A., Norton, D.P., Budai, J.D., Paranthaman, M., Specht, E.D., Kroeger, D.M., Christen, D.K., He, Q., Saffian, B., List, F.A., Lee, D.F., Harfield, E., Martin, P.M., Klabunde, C.E., Hatfield, E., and Sikka, V.K., Appl. Phys. Lett. 69, 1795 (1996).CrossRefGoogle Scholar
Norton, D.P., Goyal, A., Budai, J.D., Christen, D.K., Kroeger, D.M., Specht, E.D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C.E., Lee, D.F., Sales, B.C., and List, F.A., Science 274, 755 (1996).CrossRefGoogle Scholar
List, F.A., Goyal, A., Paranthman, M., Norton, D.P., Specht, E.D., Lee, D.F., and Kroeger, D.M., Physica C 302, 87 (1998).CrossRefGoogle Scholar
Paranthaman, M., Goyal, A., List, F.A., Specht, E.D., Lee, D.F., Martin, P.M., He, Q., Christen, D.K., Norton, D.P., Budai, J.D., and Kroeger, D.M., Physica C 275, 266 (1997).CrossRefGoogle Scholar
He, Q., Christen, D.K., Budai, J.D., Specht, E.D., Lee, D.F., Goyal, A., Norton, D.P., Paranthaman, M., List, F.A., and Kroeger, D.M., Physica C 275, 155 (1997).CrossRefGoogle Scholar
A. Mogro-Campero, Turner, L.G., and Hall, E.L., J. Appl. Phys. 65, 4951 (1989).CrossRefGoogle Scholar
Luo, L., Wu, X.D., Dye, R.C., Muenchausen, R.E., Foltyn, S.R., Coulter, Y., and Maggiore, C.J., Appl. Phys. Lett. 59, 2043 (1991).CrossRefGoogle Scholar
Mathis, J.E., Goyal, A., List, F.A., Paranthaman, P., Christen, D.K., Specht, Kroeger, D.M., Lee, D.F., and Martin, P.M., Jpn. Appl. Phys. 37, L1379 (1998).CrossRefGoogle Scholar
Kiss, T., Enpuku, K., Matsumura, T., Iriyama, Y., Nakamura, T., and Takeo, M., IEICE Trans. Elec. E79–C, 1269 (1996).Google Scholar
Moreno, F. Garcia, Temperature influences on the growth of HTS films (Diplomarbeit, University of Göttingen, Göttingen, Germany, 1995), chap. 4.Google Scholar
Koren, G., Gupta, A., Baseman, R.J., Lutwyche, M.I., and Laibowitz, R.B., Appl. Phys. Lett. 55, 2450 (1989).CrossRefGoogle Scholar
Yang, C-Y., Pashitski, A., Polyanskii, A., Larbalestier, D.C., Babcock, S.E., Goyal, A., List, F.A., Paranthaman, M., Norton, D.P., Lee, D.F., and D. Kroeger, M., Physica C 329, 114 (2000).CrossRefGoogle Scholar
Ye, J. and Nakamura, K., Physica C 254, 113 (1995).CrossRefGoogle Scholar
Gibson, G., Cohen, L.F., Humphreys, R.G., and MacManus-Driscoll, J.L., Physica C 333, 139 (2000).CrossRefGoogle Scholar