Published online by Cambridge University Press: 22 October 2013
Suction casting (SC) and centrifugal casting (CC) are two common special casting processes. The influences of SC and CC on the microstructural development of Cu–10Al–4Fe–4Ni aluminum bronzes were investigated with continuous cooling method. The results indicate that α, β′, KII, and KIII phases are observed in the quasicast microstructure via the SC process with the precipitation sequence of KII → α → KIII. Additionally, KI and KIV are observed in the quasicast microstructure via the CC process with the precipitation sequence of α + KⅠ → KII → KIV → KIII. Phase initial precipitation temperatures of the CC process are higher than that of the SC process, especially for α phase. As the quenching temperature decreases, the hardness of both alloys shows a rapid decline trend and finally reaches a steady state. It is found that the eutectoid decomposition (β → α + KIII) barely affects the hardness of the alloys.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.