Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T03:12:51.903Z Has data issue: false hasContentIssue false

A comparison of C54-TiSi2 formation in blanket and submicron gate structures using in situ x-ray diffraction during rapid thermal annealing

Published online by Cambridge University Press:  03 March 2011

L.A. Clevenger
Affiliation:
IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598
R.A. Roy
Affiliation:
IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598
C. Cabral Jr.
Affiliation:
IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598
K.L. Saenger
Affiliation:
IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598
S. Brauer
Affiliation:
IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598
G. Morales
Affiliation:
Department of Physics, Boston University, Boston, Massachusetts 02215
K.F. Ludwig Jr.
Affiliation:
Department of Physics, Boston University, Boston, Massachusetts 02215
G. Gifford
Affiliation:
IBM Microelectronics Division, Hopewell Junction, New York 12533
J. Bucchignano
Affiliation:
IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598
J. Jordan-Sweet
Affiliation:
IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598
P. DeHaven
Affiliation:
IBM Microelectronics Division, Hopewell Junction, New York
G.B. Stephenson
Affiliation:
IBM Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598
Get access

Abstract

We demonstrate the use of a synchrotron radiation source for in situ x-ray diffraction analysis during rapid thermal annealing (RTA) of 0.35 μm Salicide (self-aligned silicide) and 0.4 μm Polycide (silicided polysilicon) TiSi2 Complementary Metal Oxide Semiconductor (CMOS) gate structures. It is shown that the transformation from the C49 to C54 phase of TiSi2 occurs at higher temperatures in submicron gate structures than in unpatterned blanket films. In addition, the C54 that forms in submicron structures is (040) oriented, while the C54 that forms in unpatterned Salicide films is randomly oriented. Although the preferred oreintation of the initial C49 phase was different in the Salicide and Polycide gate structures, the final orientation of the C54 phase formed was the same. An incomplete conversion of C49 into C54-TiSi2 during the RTA of Polycide gate structures was observed and is attributed to the retarding effects of phosphorus on the transition.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Scott, D.B., Chapman, R.A., Wei, C., Mahant-Shetti, S.S., Haken, R.A., and Holloway, T. C., IEEE Trans. Electron Devices 34, 562 (1987).CrossRefGoogle Scholar
2Mann, R.W. and Clevenger, L. A., J. Electrochem. Soc. 141, 1347 (1994).CrossRefGoogle Scholar
3Clevenger, L.A. and Mann, R.W., in Silicides, Germanides, and Their Interfaces, edited by Fathauer, R. W., Mantl, S., Schowalter, L. J., and Tu, K.N. (Mater. Res. Soc. Symp. Proc. 320, Pittsburgh, PA, 1994), p. 14.Google Scholar
4Lasky, J., Nakos, J., Cain, O., and Giess, P., IEEE Trans. Electron Devices 38, 2629 (1991).CrossRefGoogle Scholar
5Agnello, P.D. and Fink, A., J. Electron. Mater. 22, 661 (1993).CrossRefGoogle Scholar
6Ganin, E., Wind, S., Ronsheim, P., Yapsir, A., Barmak, K., Bucchingnano, J., and Assenze, R., in Flow and Microstructure of Dense Suspensions, edited by Struble, L. J., Zukoski, C.F., and Maitland, G. (Mater. Res. Soc. Symp. Proc. 289, Pittsburgh, PA, 1993), p. 109.Google Scholar
7Matsubara, Y., Hariuchi, T., and Okumura, K., Appl. Phys. Lett. 62, 2634 (1993).CrossRefGoogle Scholar
8Hensel, J. C., Vandenberg, J. M., Unterwald, F. C., and Maury, A., Appl. Phys. Lett. 51, 1100 (1987).CrossRefGoogle Scholar
9Stephenson, G.B., Nucl. Instrum. Methods, Phys. Res. A 226, 447 (1988).CrossRefGoogle Scholar
10Stephenson, G. B., Ludwig, K. F. Jr., Jordan-Sweet, J. L., Brauer, S., Mainville, J., Yang, Y. S., and Sutton, M., Rev. Sci. Instrum. 60, 1537 (1989).CrossRefGoogle Scholar
11Christian, J. W., The Theory of Transformations in Metals and Alloys, 2nd ed., part 1 (Pergamon, New York, 1981), Sees. 4, 56.Google Scholar
12Beyers, R., Coulman, D., and Merchant, P., J. Appl. Phys. 61, 5110 (1987).CrossRefGoogle Scholar
13Park, H. K., Sachitano, J., McPherson, M., Yamaguchi, T., and Lehman, G., J. Vac. Sci. Technol. 2, 264 (1984).CrossRefGoogle Scholar