Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T02:14:10.572Z Has data issue: false hasContentIssue false

Compositional dependence of infrared to blue and red conversion luminescence in oxyfluoride glass-ceramics co-doped with Tm3+ and Yb3+ ions

Published online by Cambridge University Press:  03 March 2011

J.P. Denis
Affiliation:
Laboratoire de Physico-Chimie des Matériaux, C.N.R.S. (UPR-211) 92190 Meudon, France
G. Özen
Affiliation:
Laboratoire de Physico-Chimie des Matériaux, C.N.R.S. (UPR-211) 92190 Meudon, France
Xu Wu
Affiliation:
Laboratoire de Physico-Chimie des Matériaux, C.N.R.S. (UPR-211) 92190 Meudon, France
A. Kermaoui
Affiliation:
Laboratoire de Physico-Chimie des Matériaux, C.N.R.S. (UPR-211) 92190 Meudon, France
F. Pellé
Affiliation:
Laboratoire de Physico-Chimie des Matériaux, C.N.R.S. (UPR-211) 92190 Meudon, France
B. Blanzat
Affiliation:
Laboratoire de Physico-Chimie des Matériaux, C.N.R.S. (UPR-211) 92190 Meudon, France
Get access

Abstract

The upconversion of infrared radiation into visible light has been studied in heavy metal oxyfluoride glass-ceramics co-doped with Yb3+ and Tm3+ ions at 300 K. The general composition of the compounds is 69.9PbF2 + 7.5WO3 + 7.5MO2 + 15YbF3 + 0.1TmF3 (M = Si, Ge, Zr, Te, and Th). Two main upconversion emissions were observed. They are centered at 477 and 775 nm, corresponding to the 1G43H6 and 3F43H6 transitions, respectively. Slopes of the emission intensity versus excitation power measurements indicate that the blue emission is due to three-photon absorption, while two-photon absorption processes are responsible for the red emission. A comparative method was used to measure the upconversion efficiencies under 16.5 mW/cm2 excitation power. Measurements were made after the compounds were annealed at 450 °C for 4 h. The best conversion efficiencies were obtained for the compound having silicon (Si). They are 28 × 10−6 for the blue and 18 × 10−2 for the red emission.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Layne, C. B., Lowdermilk, W. H., and Weber, M. J., Phys. Rev. B 16 (1), 1016 (1977).CrossRefGoogle Scholar
2Yeh, D. C., Sibley, W. A., and Suscavage, M. J., J. Appl. Phys. 63 (9), 46444650 (1988).CrossRefGoogle Scholar
3Singh, D., Van Uitert, L. G., and Grodkiewicz, W. H., Opt. Comm. 17 (3), 315319 (1976).CrossRefGoogle Scholar
4Michel, J. C., Morin, D., and Auzel, F., Revue de physique appliquee 13, 859866 (1978).CrossRefGoogle Scholar
5Hirao, K., Todoroki, S., and Soga, N., J. Non-Cryst. Solids 143, 4045 (1992).CrossRefGoogle Scholar
6Tanabe, S., Hirao, K., and Soga, N., J. Non-Cryst. Solids 122, 7982 (1990).CrossRefGoogle Scholar
7Congshan, Z., Xiaojuan, L., and Zwji, Z., J. Non-Cryst. Solids 144, 8994 (1992).Google Scholar
8Heckroodt, R. O. and Res, M. A., Physics and Chemistry of Glasses 17 (6), 217219 (1976).Google Scholar
9Allain, J. Y., Monerie, M., and Poignant, H., Electron. Lett. 26 (3), 166168 (1990).CrossRefGoogle Scholar
10Rojo, J. M., Herrero, P., Sanz, J., Tanguy, B., Portier, J., and Reou, J. M., J. Non-Cryst. Solids 146, 5056 (1992).CrossRefGoogle Scholar
11Auzel, F., Pecile, D., and Morin, D., J. Electrochem. Soc, Solid State Science and Technology, 101107 (1975).Google Scholar
12Yeh, D. C., Sibley, W. A., and Suscavage, M. J., J. Appl. Phys. 63–69, 46444650 (1988).CrossRefGoogle Scholar
13Oomen, E.W. J.L., J. Lumin. 50, 317332 (1992).CrossRefGoogle Scholar
14Kisiler, A. and Reisfeld, R., Solar Energy 33 (2), 163169 (1984).CrossRefGoogle Scholar
15Özen, G., Denis, J. P., Wu, Xu, Kermaoui, A., Pellé, F., and Blanzat, B., J. Phys. Chem. Solids (1993, in press).Google Scholar