Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T01:07:55.649Z Has data issue: false hasContentIssue false

Compressive creep of YBa2Cu3Ox

Published online by Cambridge University Press:  31 January 2011

K. C. Goretta
Affiliation:
Argonne National Laboratory, Argonne, Illinois 60439-4838
J. L. Routbort
Affiliation:
Argonne National Laboratory, Argonne, Illinois 60439-4838
A. C. Biondo
Affiliation:
Argonne National Laboratory, Argonne, Illinois 60439-4838
Y. Gao
Affiliation:
Argonne National Laboratory, Argonne, Illinois 60439-4838
A. R. de Arellano-López
Affiliation:
Universidad de Sevilla, 41080 Sevilla, Spain
A. Domínguez-Rodríguez
Affiliation:
Universidad de Sevilla, 41080 Sevilla, Spain
Get access

Abstract

YBa2Cu3Ox was deformed from 850 to 980 °C in oxygen partial pressures of 103 to 105 Pa. Steady-state creep rate, ̇, for P(O2) from 104 to 105 Pa could be expressed as ̇ = Aσ1.0 (GS)−2.8±0.6 exp −(970 ± 130 kJ/mole)/RT, where A is a constant, σ the steady-state stress, GS the average grain size, and R and T have their usual meanings, For P(O2) from 103 to 3 ⊠ 103 Pa, the activation energy decreased to about 650 kJ/mole and for a given temperature creep kinetics were much faster. The data and microscopic observations indicated that creep occurred by diffusional flow. Comparisons with diffusion data for YBa2Cu3Ox suggested that Y or Ba may be rate-controlling diffusing species.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Robinson, Q., Georgopoulos, P., Johnson, D. L., Marcy, H. O., Kannewurf, C. R., Hwu, S-J., Marks, T. J., Poeppelmeier, K. R., Song, S. N., and Ketterson, J. B., Adv. Ceram. Mater. 2, 380 (1987).CrossRefGoogle Scholar
2Grader, G. S., O'Bryan, H. M., and Rhodes, W. W., Appl. Phys. Lett. 52, 1831 (1988).CrossRefGoogle Scholar
3Chen, I-W., Wu, X., Keating, S. J., Keating, C. Y., Johnson, P. A., and Tien, T-Y., J. Am. Ceram. Soc. 70, C388 (1987).Google Scholar
4Rajan, K., German, R. M., Knorr, D. B., MacCrone, R. K., Misiolek, W., and Wright, R. N., J. Met. 41 (4), 28 (1989).Google Scholar
5Town, S. L., Mathews, D. N., Cochrane, J., Russel, G. J., and Taylor, K. N. R., Cryogenics 30, 427 (1990).CrossRefGoogle Scholar
6Kramer, M. J., McCallum, R. W., and Chumbley, L. S., Physica C 162–164, 552 (1989).CrossRefGoogle Scholar
7Garcia, R., Misiolek, W. Z., Wright, R. N., and Rajan, K., in High Temperature Superconductors: Fundamental Properties and Novel Materials Processing, edited by Narayan, J., Chu, C. W., Schneemeyer, L. F., and Christen, D. K. (Mater. Res. Soc. Symp. Proc. 169, Pittsburgh, PA, 1990).Google Scholar
8Routbort, J. L., Acta Metall. 30, 663 (1982).Google Scholar
9Stumberg, A. W. von, Chen, N., Goretta, K. C., and Routbort, J. L., J. Appl. Phys. 66, 2079 (1989).CrossRefGoogle Scholar
10Chen, N., Shi, D., and Goretta, K. C., J. Appl. Phys. 66, 2485 (1989).CrossRefGoogle Scholar
11Goretta, K. C., Bloom, I., Chen, N., Goudey, G. T., Hash, M. C., Klassen, G., Lanagan, M. T., Poeppel, R. B., Singh, J. P., Shi, D., Balachandran, U., Dusek, J. T., and Capone, D. W., II, Mater. Lett. 7, 161 (1988).Google Scholar
12Cannon, W. R. and Langdon, T. G., J. Mater. Sci. 18, 1 (1983).CrossRefGoogle Scholar
13Reyes-Morel, P. E., Wu, X., and Chen, I-W., in Ceramic Superconductors II, edited by Yan, M. F. (Am. Ceram. Soc, Westerville, OH, 1988), p. 590.Google Scholar
14Bussod, G., Pechenik, A., Chu, C-T., and Dunn, B., J. Am. Ceram. Soc. 72, 137 (1989).Google Scholar
15Balachandran, U., Poeppel, R. B., Emerson, J. E., Johnson, S. A., Lanagan, M. T., Youngdahl, C. A., Shi, D., Goretta, K. C., and Eror, N. G., Mater. Lett. 8, 454 (1989).CrossRefGoogle Scholar
16Routbort, J. L., Acta Metall. 27, 649 (1979).CrossRefGoogle Scholar
17Gervais, H., Pelissier, B., and Castaing, J., Rev. Int. Hautes Temp. Refract. 15, 43 (1978).Google Scholar
18Routbort, J. L., Goretta, K. C., and Singh, J. P., in High Temperature Superconductors: Fundamental Properties and Novel Materials Processing, edited by Narayan, J., Chu, C. W., Schneemeyer, L. F., and Christen, D. K. (Mater. Res. Soc. Symp. Proc. 169, Pittsburgh, PA, 1990), p. 1247.Google Scholar
19Bormann, R. and Nölting, J., Appl. Phys. Lett. 54, 2148 (1989).CrossRefGoogle Scholar
20Dell'Agli, G., Marino, O., Mascolo, G., Pernice, P., Chiara, A. Di, Pepe, G., and Scotti, U.Uccio, Di, J. Mater. Sci.: Mater. Electronics 1, 20 (1990).Google Scholar
21Routbort, J. L., Rothman, S. J., Nowicki, L. J., and Goretta, K. C., Mater. Science Forum 34–36, 315 (1988).Google Scholar
22Rothman, S. J., Routbort, J. L., and Baker, J. E., Phys. Rev. B 40, 8852 (1989).CrossRefGoogle Scholar
23Gupta, D., Laibowitz, R. B., and Lacey, J. A., Phys. Rev. Lett. 64, 2675 (1990).CrossRefGoogle Scholar
24Chen, N., Rothman, S. J., and Routbort, J. L., J. Appl. Phys. 68, 2523 (1990).CrossRefGoogle Scholar
25Routbort, J. L., Chen, N., Goretta, K. C., and Rothman, S. J., Proceedings ICMC '90 Topical Conference: High Temperature Superconductors, Materials Aspects, Garmisch-Partenkirchen, West Germany, May, 1990 (in press).Google Scholar
26Mitchell, T. E., Hobbs, L. W., Heuer, A. H., Castaing, J., Cadoz, J., and Philibert, J., Acta Metall. 27, 1677 (1979).CrossRefGoogle Scholar
27Goretta, K. C. and Routbort, J. L., Acta Metall. 35, 1047 (1987).Google Scholar
28Werder, D. J., Chen, C. H., Gurvitch, M., Miller, B., Schneemeyer, L. F., and Waszczak, J. V., Physica C 160, 411 (1989).CrossRefGoogle Scholar
29Nakahara, S., Jin, S., Sherwood, R. C., and Tiefel, T. H., Appl. Phys. Lett. 54, 1926 (1989).Google Scholar
30Kramer, M. J., Chumbley, L. S., and McCallum, R. W., J. Mater. Sci. 25, 1978 (1990).Google Scholar