Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T15:44:31.426Z Has data issue: false hasContentIssue false

Computational characterization of monolayer C3N: A two-dimensional nitrogen-graphene crystal

Published online by Cambridge University Press:  13 June 2017

Xiaodong Zhou
Affiliation:
Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
Wanxiang Feng*
Affiliation:
Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
Shan Guan
Affiliation:
Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
Botao Fu
Affiliation:
Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
Wenyong Su
Affiliation:
Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
Yugui Yao
Affiliation:
Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
*
a) Address all correspondence to this author. e-mail: wxfeng@bit.edu.cn
Get access

Abstract

Carbon–nitrogen compounds have attracted enormous attention because of their unusual physical properties and fascinating applications on various devices. Especially in two-dimension, doping of nitrogen atoms in graphene is widely believed to be an effective mechanism to improve the electronic and optoelectronic performances of graphene. In this work, using the first-principles calculations, we systematically investigate the electronic, mechanical, and optical properties of monolayer C3N, a newly synthesized two-dimensional carbon-graphene crystal. The useful results we obtained are: (i) monolayer C3N is an indirect band-gap semiconductor with the gap of 1.042 eV calculated by the accurate hybrid functional; (ii) compared with graphene, it has smaller ideal tensile strength but larger in-plane stiffness; (iii) the nonlinear effect of elasticity at large strains is more remarkable in monolayer C3N; (iv) monolayer C3N exhibits main absorption peak in visible light region and secondary peak in ultraviolet region, and the absorbing ratio between them can be effectively mediated by strain.

Type
Invited Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Venkatesan Renugopalakrishnan

References

REFERENCES

Brazhkin, V., Dubrovinskaia, N., Nicol, M., Novikov, N., Riedel, R., Solozhenko, V., and Zhao, Y.: From our readers: What does ‘harder than diamond’ mean? Nat. Mater. 3, 576 (2004).CrossRefGoogle Scholar
Liu, A.Y. and Cohen, M.L.: Prediction of new low compressibility solids. Science 245, 841 (1989).Google Scholar
Zhang, M., Wei, Q., Yan, H., Zhao, Y., and Wang, H.: A novel superhard tetragonal carbon mononitride. J. Phys. Chem. C 118, 3202 (2014).Google Scholar
Hart, J.N., Claeyssens, F., Allan, N.L., and May, P.W.: Carbon nitride: Ab initio investigation of carbon-rich phases. Phys. Rev. B 80, 174111 (2009).Google Scholar
Tian, F., Wang, J., He, Z., Ma, Y., Wang, L., Cui, T., Chen, C., Liu, B., and Zou, G.: Superhard semiconducting C3N2 compounds predicted via first-principles calculations. Phys. Rev. B 78, 235431 (2008).Google Scholar
Hao, J., Liu, H., Lei, W., Tang, X., Lu, J., Liu, D., and Li, Y.: Prediction of a superhard carbon-rich C–N compound comparable to diamond. J. Phys. Chem. C 119, 28614 (2015).Google Scholar
Sandré, É., Pickard, C.J., and Colliex, C.: What are the possible structures for CN x compounds? The example of C3N. Chem. Phys. Lett. 325, 53 (2000).Google Scholar
Hu, Q., Wu, Q., Wang, H., He, J., and Zhang, G.: First-principles studies of structural and electronic properties of layered C3N phases. Phys. Status Solidi B 249, 784 (2012).CrossRefGoogle Scholar
Dong, H., Oganov, A.R., Zhu, Q., and Qian, G-R.: The phase diagram and hardness of carbon nitrides. Sci. Rep. 5, 9870 (2015).CrossRefGoogle ScholarPubMed
Goettmann, F., Fischer, A., Antonietti, M., and Thomas, A.: Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel–Crafts reaction of benzene. Angew. Chem. Int. Ed. 45, 4467 (2006).Google Scholar
Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J.M., Domen, K., and Antonietti, M.: A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76 (2008).Google Scholar
Pati, S.K., Enoki, T., and Rao, C.N.R.: Graphene and its Fascinating Attributes (World Scientific, Singapore, 2011).Google Scholar
Lee, C., Wei, X., Kysar, J.W., and Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).Google Scholar
Deng, D., Pan, X., Yu, L., Cui, Y., Jiang, Y., Qi, J., Li, W-X., Fu, Q., Ma, X., Xue, Q., Sun, G., and Bao, X.: Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 23, 1188 (2011).CrossRefGoogle Scholar
Zhao, L., He, R., Rim, K.T., Schiros, T., Kim, K.S., Zhou, H., Gutiérrez, C., Chockalingam, S.P., Arguello, C.J., Pálová, L., Nordlund, D., Hybertsen, M.S., Reichman, D.R., Heinz, T.F., Kim, P., Pinczuk, A., Flynn, G.W., and Pasupathy, A.N.: Visualizing individual nitrogen dopants in monolayer graphene. Science 333, 999 (2011).CrossRefGoogle ScholarPubMed
Mizuno, S., Fujita, M., and Nakao, K.: Electronic states of graphitic heterocompounds of carbon, boron and nitrogen. Synth. Met. 71, 1869 (1995).Google Scholar
Xiang, H.J., Huang, B., Li, Z.Y., Wei, S-H., Yang, J.L., and Gong, X.G.: Ordered semiconducting nitrogen-graphene alloys. Phys. Rev. X 2, 011003 (2012).Google Scholar
Mahmood, J., Lee, E.K., Jung, M., Shin, D., Choi, H-J., Seo, J-M., Jung, S-M., Kim, D., Li, F., Lah, M.S., Park, N., Shin, H-J., Oh, J.H., and Baek, J-B.: Two-dimensional polyaniline (C3N) from carbonized organic single crystals in solid state. PNAS 113, 7414 (2016).Google Scholar
Yang, S., Li, W., Ye, C., Wang, G., Tian, H., Zhu, C., He, P., Ding, G., Xie, X., Liu, Y., Lifshitz, Y., Lee, S-T., Kang, Z., and Jiang, M.: C3N—A 2D crystalline, hole-free, tunable-narrow-bandgap semiconductor with ferromagnetic properties. Adv. Mater. 29, 1605625 (2017).Google Scholar
Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).Google Scholar
Kresse, G. and Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).Google Scholar
Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).Google Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
Heyd, J., Scuseria, G.E., and Ernzerhof, M.: Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 124, 219906 (2006).Google Scholar
Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).Google Scholar
King, T.C., Matthews, P.D., Holgado, J.P., Jefferson, D.A., Lambert, R.M., Alavi, A., and Wright, D.S.: A single-source route to bulk samples of C3N and the co-evolution of graphitic carbon microspheres. Carbon 64, 6 (2013).Google Scholar
Baroni, S., de Gironcoli, S., Dal Corso, A., and Giannozzi, P.: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515 (2001).Google Scholar
Liu, F., Ming, P., and Li, J.: Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 76, 064120 (2007).Google Scholar
Kubo, R.: Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570 (1957).Google Scholar
Wang, C.S. and Callaway, J.: Band structure of nickel: Spin–orbit coupling, the Fermi surface, and the optical conductivity. Phys. Rev. B 9, 4897 (1974).Google Scholar
Mostofi, A.A., Yates, J.R., Lee, Y-S., Souza, I., Vanderbilt, D., and Marzari, N.: wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685 (2008).Google Scholar
Roundy, D. and Cohen, M.L.: Ideal strength of diamond, Si, and Ge. Phys. Rev. B 64, 212103 (2001).Google Scholar
Luo, W., Roundy, D., Cohen, M.L., and Morris, J.W. Jr.: Ideal strength of bcc molybdenum and niobium. Phys. Rev. B 66, 094110 (2002).Google Scholar
Cheng, Y.C., Zhu, Z.Y., Huang, G.S., and Schwingenschlögl, U.: Grüneisen parameter of the G mode of strained monolayer graphene. Phys. Rev. B 83, 115449 (2011).Google Scholar
Peng, Q., Han, L., Lian, J., Wen, X., Liu, S., Chen, Z., Koratkar, N., and De, S.: Mechanical degradation of graphene by epoxidation: Insights from first-principles calculations. Phys. Chem. Chem. Phys. 17, 19484 (2015).Google Scholar
Kudin, K.N., Scuseria, G.E., and Yakobson, B.I.: C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 64, 235406 (2001).Google Scholar
Greaves, G.N., Greer, A.L., Lakes, R.S., and Rouxel, T.: Poisson’s ratio and modern materials. Nat. Mater. 10, 823 (2011).Google Scholar
Kalosakas, G., Lathiotakis, N.N., Galiotis, C., and Papagelis, K.: In-plane force fields and elastic properties of graphene. J. Appl. Phys. 113, 134307 (2013).CrossRefGoogle Scholar
Cadelano, E., Palla, P.L., Giordano, S., and Colombo, L.: Nonlinear elasticity of monolayer graphene. Phys. Rev. Lett. 102, 235502 (2009).Google Scholar
Zhou, J. and Huang, R.: Internal lattice relaxation of single-layer graphene under in-plane deformation. J. Mech. Phys. Solids 56, 1609 (2008).Google Scholar
Zakharchenko, K.V., Katsnelson, M.I., and Fasolino, A.: Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. Phys. Rev. Lett. 102, 046808 (2009).Google Scholar
Wei, Q. and Peng, X.: Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104, 251915 (2014).Google Scholar
Jasiuk, I., Chen, J., and Thorpe, M.F.: Elastic moduli of two dimensional materials with polygonal and elliptical holes. Appl. Mech. Rev. 47, S18 (1994).Google Scholar