Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-04T02:28:05.395Z Has data issue: false hasContentIssue false

A computational study of SrTiO3 thin film deposition: Morphology and growth modes

Published online by Cambridge University Press:  31 January 2011

Cosima N. Boswell*
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
Susan B. Sinnott*
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
*
a) Current address: University of California Berkeley, Berkeley, California 94720.
b) Address all correspondence to this author. e-mail: ssinn@mse.ufl.edu
Get access

Abstract

The growth of SrTiO3 (STO) thin films is examined using classical molecular dynamics simulations. First, a beam of alternating SrO and TiO2 molecules is deposited on the (001) surface of STO with incident kinetic energies of 0.1, 0.5, or 1.0 eV/atom. Second, deposition of alternating SrO and TiO2 monolayers, where both have incident energies of 1.0 eV/atom, is examined. The resulting thin film morphologies predicted by the simulations are compared to available experimental data. The simulations indicate the way in which the incident energy, surface termination, and beam composition influence the morphology of the thin films. On the whole, some layer-by-layer growth is predicted to occur on both SrO- and TiO2-terminated STO for both types of deposition processes, with the alternating monolayer approach yielding thin films with compositions that are much closer to that of bulk STO.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Zhou, C. and Newns, D.M.: Intrinsic dead layer effect and the performance of ferroelectric thin film capacitors. J. Appl. Phys. 82, 3081 (1997)CrossRefGoogle Scholar
2Petrov, P. and Carlsson, E.F.: Improved SrTiO3 multilayers for microwave application: Growth and properties. J. Appl. Phys. 84, 3134 (1998)CrossRefGoogle Scholar
3Treece, R.E., Thompson, J.B., Mueller, C.H., Riykin, T., and Cromar, M.W.: Optimization of SrTiO3 for applications in tunable resonant circuits. IEEE Trans. Appl. Supercond. 7, 2363 (1997)CrossRefGoogle Scholar
4Roy, D., Peng, C.J., and Krupanidhi, S.B.: Excimer laser ablated strontium titanate thin films for dynamic random-access memory applications. Appl. Phys. Lett. 60, 2478 (1992)CrossRefGoogle Scholar
5Shirane, G. and Yamada, Y.: Lattice-dynamical study of the 110 K phase transition in SrTiO3. Phys. Rev. 177(2), 858 (1969).CrossRefGoogle Scholar
6Piskunov, S., Heifets, E., Eglitis, R.I., and Borstel, G.: Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovs-kites: An ab initio HF/DFT study. Comput. Mater. Sci. 29, 165 (2004)CrossRefGoogle Scholar
7Hadjiivanov, K.I. and Klissurski, D.G.: Surface chemistry of titania (anatase) and titania-supported catalysts. Chem. Soc. Rev. 25, 61 (1996)CrossRefGoogle Scholar
8Nakamura, T., Inada, H., and Iiyama, M.: In situ surface characterization of SrTiO3(100) substrates and homoepitaxial SrTiO3 thin films grown by molecular beam epitaxy and pulsed laser deposition. Appl. Surf. Sci. 130–132, 576 (1998)CrossRefGoogle Scholar
9Ong, C.K. and Wang, S.J.: In situ RHEED monitor of the growth of epitaxial anatase TiO2 thin films. Appl. Surf. Sci. 185, 47 (2001)CrossRefGoogle Scholar
10Takahashi, R., Matsumoto, Y., Ohsawa, T., Lippmaa, M., Kawasaki, M., and Koinuma, H.: Growth dynamics of the epitaxial SrO film on SrTiO3(001). J. Cryst. Growth 234, 505 (2002)CrossRefGoogle Scholar
11Khodan, A.N., Guyard, S., Contour, J.P., Crete, D.G., Jacquet, E., and Bouzehouane, K.: Pulsed laser deposition of epitaxial SrTiO3films: Growth, structure and functional properties. Thin Solid Films 515, 6422 (2007)CrossRefGoogle Scholar
12Ohtomo, A. and Hwang, H.Y.: Growth mode control of the free-carrier density in SrTiO3 films. J. Appl. Phys. 102, 083704 (2007)CrossRefGoogle Scholar
13Kubo, M., Oumi, Y., Miura, R., Stirling, A., Miyamoto, A., Kawasaki, M., Yoshimoto, M., and Koinuma, H.: Atomic control of layer-by-layer epitaxial growth on SrTiO3(001): Molecular-dynamics simulations. Phys. Rev. B 56(20), 13535 (1997).CrossRefGoogle Scholar
14Wohlwend, J.L., Behera, R.K., Jang, I., Phillpot, S.R., and Sinnott, S.B.: Morphology and growth modes of metal-oxides deposited on SrTiO3. Surf. Sci. 603(6), 873 (2009)CrossRefGoogle Scholar
15Sekiguchi, S., Fujimoto, M., Nomura, M., Cho, S.B., Tanaka, J., Nishihara, T., Kang, M.G., and Park, H.H.: Atomic force microscopic observation of SrTiO3 polar surface. Solid State Ionics 108, 73 (1998)CrossRefGoogle Scholar
16Wolf, D., Keblinski, P., Phillpot, S.R., and Eggebrecht, J.: Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r–1 summation. J. Chem. Phys. 110(17), 8254 (1999)CrossRefGoogle Scholar
17Allen, M.P. and Tildesley, D.J.: Computer Simulation of Liquids (Oxford University Press, Oxford, UK, 1987), pp. 155, 162.Google Scholar
18Kennedy, R.J. and Stampe, P.A.: The influence of lattice mismatch and film thickness on the growth of TiO2 on LaAlO3 and SrTiO3substrates. J. Cryst. Growth 252, 333 (2003)CrossRefGoogle Scholar
19Koster, G., Rijnders, G., Blank, D.H.A., and Rogalla, H.: Surface morphology determined by (001) single-crystal SrTiO3 termination. Physica C 339, 215 (2000)CrossRefGoogle Scholar
20Liu, L., Lu, H., Fei, Y., Guo, H., Xiang, W., and Chen, Z.: Formation of atomically smooth surfaces on SrTiO3 substrates for epitaxial film growth. J. Cryst. Growth 253, 374 (2003)CrossRefGoogle Scholar
21Tse, Y.Y., Koutsonas, Y., Jackson, T.J., Passerieux, G., and Jones, I.P.: Microstructure of homoepitaxial strontium titanate films grown by pulsed laser deposition. Thin Solid Films 515, 1788 (2006)CrossRefGoogle Scholar
22Blank, D.H.A., Rijnders, G., Koster, G., and Rogalla, H.: In-situ monitoring during pulsed laser deposition using RHEED at high pressure. Appl. Surf. Sci. 127–129, 633 (1998)CrossRefGoogle Scholar
23Li, Y.R., Jiang, S.W., Zhang, Y., Deng, X.W., and Wei, X.H.: Surface diffusion during layer growth of SrTiO3 films with pulsed laser molecular beam epitaxy. J. Cryst. Growth 278, 629 (2005)CrossRefGoogle Scholar
24Song, J.H. and Jeong, Y.H.: SrTiO3 homoepitaxy by the pulsed laser deposition method: Island, layer-by-layer, and step-flow growth. Solid State Commun. 125, 563 (2003)CrossRefGoogle Scholar