Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T01:29:06.911Z Has data issue: false hasContentIssue false

Control of epitaxial growth orientation in YBa2Cu3O7−δ films on vicinal (110) SrTiO3 substrates

Published online by Cambridge University Press:  31 January 2011

D. S. Linehan
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907
E. P. Kvam
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907
L. Hou
Affiliation:
Department of Physics, Purdue University, West Lafayette, Indiana 47907
M. W. McElfresh
Affiliation:
Department of Physics, Purdue University, West Lafayette, Indiana 47907
Get access

Abstract

Films of Yba2Cu3O7−δ (YBCO) were grown on (001), exact and vicinal (110), and (111) SrTiO3 single crystal substrates by pulsed laser deposition, and evaluated by x-ray diffraction and scanning force microscopy (AFM). It was observed that the YBCO was always epitaxially aligned to the substrate with the [001] (c-axis) parallel to a substrate cube axis direction. For the exact (001), (110), and (111) surfaces, there were one, two, and three orientations, respectively. For the vicinal (110) surfaces, however, there was usually only one discernible c-axis orientation, corresponding to a single {013} film surface orientation. The reduction of the (110) surface twofold symmetry by use of a vicinal substrate thus allowed controlled growth of a YBCO single crystal with an inclined c-axis orientation.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lucia, M. L., Santamaria, J., Iborra, E., Hernandez-Rojas, J. L., and Sanchez-Quesada, F., Physica C 218, 59 (1993).CrossRefGoogle Scholar
2.Fay, H. and Brandle, C. D., Crystal Growth (Pergamon Press, Oxford, 1967), pp. 5155.Google Scholar
3.Cheung, J. T., Gergis, I., James, M., and DeWames, R. E., Appl. Phys. Lett. 60 (25), 3180 (1992).CrossRefGoogle Scholar
4.Wu, X. D., Muenchausen, R. E., Nogar, N. S., Pique, A., Edwards, R., B.Wilkens, Ravi, T. S., Hwang, D. M., and Chen, C. Y., Appl. Phys. Lett. 58 (3), 304 (1991).CrossRefGoogle Scholar
5.Fork, D. K., Fenner, D. B., Barton, R. W., Phillips, J. M., Connell, G. A. N., Boyce, J. B., and Geballe, T. H., Appl. Phys. Lett. 57 (11), 1161 (1990).CrossRefGoogle Scholar
6.Fork, D. K., Nashimoto, K., and Geballe, T. H., Appl. Phys. Lett. 60 (13), 1621 (1992).CrossRefGoogle Scholar
7.Gergis, I. S., Cheung, J. T., Trinh, T. N., Sovero, E. A., and Kobrin, P. H., Appl. Phys. Lett. 60 (16), 2026 (1992).CrossRefGoogle Scholar
8.Linker, G., Xi, X. X., Meyer, O., Li, Q., and Geerk, J., Solid State Commun. 69 (3), 249 (1989).CrossRefGoogle Scholar
9.Inam, A., Rogers, C. T., Ramesh, R., Remschnig, K., Farrow, L., Hart, D., Venkatesan, T., and Wilkens, B., Appl. Phys. Lett. 57 (23), 2484 (1990).CrossRefGoogle Scholar
10.Chan, S-W., Hwang, D. M., and Nazar, L., J. Appl. Phys. 65 (12), 4719 (1989).CrossRefGoogle Scholar
11.Aarnink, W. A. M., Reuvekamp, E. M. C. M., Verhoeven, M. A. J., Pedyash, M. V., Gerritsma, G. J., van Silfhout, A., Rogalla, H., and Ryan, T. W., Appl. Phys. Lett. 61 (5), 607 (1992).CrossRefGoogle Scholar
12.Zheng, J. P., Dong, S. Y., Bhattacharya, D., and Kwok, H. S., J. Appl. Phys. 70 (11), 7167 (1991).CrossRefGoogle Scholar
13.Seo, J. W., Kabius, B., Jia, C. L., Soltner, H., Poppe, U., and Urban, K., Physica C 255, 158 (1994).CrossRefGoogle Scholar
14.Olsson, E., Gupta, A., Thouless, M. D., Segmüller, A., and Clarke, D. R., Appl. Phys. Lett. 58 (15), 1682 (1991).CrossRefGoogle Scholar
15.Kamei, M., Takahashi, H., Fujino, S., and Morishita, T., Physica C 199, 425 (1992).CrossRefGoogle Scholar
16.Norton, M. G., Summerfelt, S. R., and Carter, C. B., Appl. Phys. Lett. 56 (22), 2246 (1990).CrossRefGoogle Scholar
17.Zheng, J. P., Dong, S. Y., and Kwok, H. S., Appl. Phys. Lett. 58 (5), 540 (1991).CrossRefGoogle Scholar
18.Akamina, S., Barrett, R. C., and Quate, C. F., Appl. Phys. Lett. 57 (3), 316 (1990).CrossRefGoogle Scholar
19.McElfresh, M., “Fundamentals of magnetism and magnetic measurements featuring Quantum Design's magnetic property measurement system,” Quantum Design (1994).Google Scholar
20.Cullity, B. D., Elements of X-Ray Diffraction (Addison-Wesley Publishing Company, Inc., Reading, PA, 1978), pp. 350360.Google Scholar
21.Tarascon, J. M., Barboux, P., Bagley, B. G., Greene, L. H., Mckinnon, W. R., and Hull, G. W., Chemistry of High-Temperature Superconductors (American Chemical Society, Washington, DC, 1987), pp. 198210.CrossRefGoogle Scholar
22.Ng-Wong, W.et al., Adv. Ceram. Mater. 2, 565 (1987).CrossRefGoogle Scholar
23.Holtzberg, F., Kaiser, D. L., Scott, B. A., McGuire, T. R., Jackson, T. N., Kleinsasser, A., and Tozar, S., Chemistry of High-Temperature Superconductors (American Chemical Society, Washington, DC, 1987), pp. 7984.CrossRefGoogle Scholar
24.Matsui, T., Suzuki, T., Ohi, A., Kimura, H., and Mukae, K., Jpn. J. Appl. Phys., Part 2 32 (9A), L1218 (1993).CrossRefGoogle Scholar
25.Eom, C. B., Marshall, A. F., Suzuki, Y., Geballe, T. H., Boyer, B., Pease, R. F. W., van Dover, R. B. and Phillips, J. M., Phys. Rev. B: Condens. Matter 46 (18), 11902 (1992).CrossRefGoogle Scholar