Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T06:34:41.445Z Has data issue: false hasContentIssue false

The control of time-dependent buckling patterns in thin confined elastomer film

Published online by Cambridge University Press:  31 January 2011

Brad Winton*
Affiliation:
University of Wollongong–ISEM, Wollongong, New South Wales 2519, Australia
Mihail Ionescu
Affiliation:
ANSTO-Institute for Environmental Research, Lucas Heights, New South Wales 2234, Australia
Shi Xue Dou
Affiliation:
University of Wollongong–ISEM, Wollongong, New South Wales 2519, Australia
*
a)Address all correspondence to this author. e-mail: bwinton@gmail.com
Get access

Abstract

Low energy metal ion implantation has been used to combine an easy “bottom-up” way of creating and tuning different topographic structures on submicron to micrometer scales with the embedding of a metallic element-rich functionalized layer at the surface for a variety of scientific and technological applications. The self-organizing and complex patterns of functionalized topographic structures are highly dependent on the implanted metal ion species, variations in the geometric confinement of the buckled areas on the larger unmodified elastomer film, and the boundary conditions of the buckled regions. Systematic investigations of these dependencies have been carried out via optical and atomic force microscopy, and confirmed with cross-sectional transmission electron microscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mcdonald, J.C., Whitesides, G.M.Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35, 491 (2002)CrossRefGoogle ScholarPubMed
2.Tanaka, Y., Sato, K., Shimizu, T., Yamato, M., Okano, T., Kitamori, T.Biological cells on microchips: New technologies and applications. Biosens. Bioelectron. 23, 449 (2007)CrossRefGoogle ScholarPubMed
3.Millet, L.J., Stewart, M.E., Sweedler, J.V., Nuzzo, R.G., Gillette, M.U.Microfluidic devices for culturing primary mammalian neurons at low densities. Lab Chip 7, 987 (2007)CrossRefGoogle ScholarPubMed
4.Moon, M-W., Lee, S.H., Sun, J-Y., Oh, K.H., Vaziri, A., Hutchinson, J.W.Wrinkled hard skin on polymer substrates induced by focused ion beam irradiation. Proc. Natl. Acad. Sci. U.S.A. 104, 1130 (2007)CrossRefGoogle Scholar
5.Chen, X., Hutchinson, J.W.A family of herringbone patterns in thin films. Scr. Mater. 50, 797 (2004)CrossRefGoogle Scholar
6.Huang, R.Wrinkling of an elastic film on a viscoelastic substrate. J. Mech. Phys. Solids 53, 63 (2005)CrossRefGoogle Scholar
7.Crosby, A.J., Hageman, M., Duncan, A.Controlling polymer adhesion with “pancakes.” Langmuir 21, 11738 (2005)CrossRefGoogle ScholarPubMed
8.Harrison, C., Stafford, C.M., Zhang, W., Karim, A.Sinusoidal phase grating created by a tunably buckled surface. Appl. Phys. Lett. 85, 4016 (2000)CrossRefGoogle Scholar
9.Chan, E.P., Crosby, A.J.Fabricating microlens arrays by surface wrinkling. Adv. Mater. 18, 3238 (2006)CrossRefGoogle Scholar
10.Kim, S.R., Teixeira, A.I., Nealey, P.F., Wendt, A.E., Abbott, N.L.Fabrication of polymeric substrates with well-defined nanometer-scale topography and tailored surface chemistry. Adv. Mater. 14, 1468 (2002)3.0.CO;2-H>CrossRefGoogle Scholar
11.Khademhosseini, A., Langer, R., Borenstein, J., Vacanti, J.Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. U.S.A. 103, 2480 (2006)CrossRefGoogle ScholarPubMed
12.Markou, A., Beltsios, K.G., Panagiotopoulos, I., Vlachopoulou, M-E., Tserepi, A., Alexandrakis, V., Bakas, T., Dimopoulos, T.Magnetic properties of Co films and Co/Pt multilayers deposited on PDMS nanostructures. J. Magn. Magn. Mater. 321, 2582 (2009)CrossRefGoogle Scholar
13.Hu, S-H., Liu, T-Y., Tsai, C-H., Chen, S-Y.Preparation and characterization of magnetic ferroscaffolds for tissue engineering. J. Magn. Magn. Mater. 310, 2871 (2007)CrossRefGoogle Scholar
14.Bowden, N., Huck, W.T.S., Paul, K.E., Whitesides, G.M.The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer. Appl. Phys. Lett. 75, 2557 (1999)CrossRefGoogle Scholar
15.Chung, S., Lee, J.H., Moon, M-W., Han, J., Kamm, R.D.Non-lithographic wrinkle nanochannels for protein preconcentration. Adv. Mater. 20, 3011 (2008)CrossRefGoogle Scholar
16.Hyun, D.C., Jeong, U.Substrate thickness: An effective control parameter for polymer thin film buckling on PDMS substrates. J. Appl. Polym. Sci. 112, 2683 (2009)CrossRefGoogle Scholar
17.Moon, M-W., Vaziri, A.Surface modification of polymers using a multi-step plasma treatment. Scr. Mater. 60, 44 (2009)CrossRefGoogle Scholar
18.Bowden, N., Brittain, S., Evans, A.G., Hutchinson, J.W., Whitesides, G.M.Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146 (1998)CrossRefGoogle Scholar
19.Zhang, H-L., Okayasu, T., Bucknall, D.G.Large area ordered lateral patterns in confined polymer thin films. Eur. Polym. J. 40, 981 (2004)CrossRefGoogle Scholar
20.Ohzono, T., Matsushita, I., Shimomura, M.Coupling of wrinkle patterns to microsphere-array lithographic patterns. Soft Mater. 1, 227 (2005)CrossRefGoogle ScholarPubMed
21.Moon, M-W., Lee, S.H., Sun, J-Y., Oh, K.H., Vaziri, A., Hutchinson, J.W.Controlled formation of nanoscale wrinkling patterns on polymers using focused ion beam. Scr. Mater. 57, 747 (2007)CrossRefGoogle Scholar
22.Katsenberg, F.Irradiation- and strain-induced self-organization of elastomer surfaces. Macromol. Mater. Eng. 286, 26 (2001)3.0.CO;2-9>CrossRefGoogle Scholar
23.Katzenberg, F.Cost-effective production of highly regular nanostructured metallization layers. Nanotechnology 14, 1019 (2003)CrossRefGoogle Scholar
24.Moon, M-W., Vaziri, A.Surface modification of polymers using a multi-step plasma treatment. Scr. Mater. 60, 44 (2009)CrossRefGoogle Scholar
25.Edmondson, S., Frieda, K., Comrie, J.E., Onck, P.R., Huck, W.T.S.Buckling in quasi-2D polymers. Adv. Mater. 18, 724 (2006)CrossRefGoogle Scholar
26.Moon, M-W., Her, E-K., Oh, K.H., Lee, K-R., Vaziri, A.Sculpting on polymers using focused ion beam. Surf. Coat. Technol. 202, 5319 (2008)CrossRefGoogle Scholar
27.Winton, B., Ionescu, M., Dou, S.X., Wexler, D., Alvarez, G.A.Structural and morphological modification of PDMS thick film surfaces by ion implantation with the formation of strain-induced buckling domains. Acta Mater. 58, 1861 (2010)CrossRefGoogle Scholar
28.Kondyurin, A., Bilik, M.Ion Beam Treatment of Polymers: Application Aspects from Medicine to Space 1st. ed. (Elsevier, Oxford, UK 2008)19Google Scholar
29.Eddington, D.T., Puccinelli, J.P., Beebe, D.J.Thermal aging and reduced hydrophobic recovery of polydimethylsiloxane. Sens. Actuators, B 114, 170 (2006)CrossRefGoogle Scholar
30.Chan, E.P., Crosby, A.J.Spontaneous formation of aligned wrinkling patterns. Soft Mater. 2, 324 (2006)CrossRefGoogle ScholarPubMed
31.Groenewold, J.Wrinkling of plates coupled with soft elastic media. Physica A 298, 32 (2001)CrossRefGoogle Scholar
32.Yuguang, W., Tonghe, Z., Yawen, Z., Gu, Z., Huixing, Z., Xiaoji, Z.Influence of nanostructure on electrical and mechanical properties for Cu implanted PET. Surf. Coat. Technol. 148, 221 (2001)CrossRefGoogle Scholar
33.Yuguang, W., Tonghe, Z., Andong, L., Gu, Z.The nano-structure and properties of Ag-implanted PET. Surf. Coat. Technol. 157, 262 (2002)CrossRefGoogle Scholar