Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T00:28:20.772Z Has data issue: false hasContentIssue false

Controlled double-jet precipitation of uniform colloidal crystalline particles of Zr- and Sr-doped barium titanates

Published online by Cambridge University Press:  31 January 2011

Yie-Shein Her
Affiliation:
Center for Advanced Materials Processing, Clarkson University, Box 5814, Potsdam, New York 13699–5814
Egon Matijević
Affiliation:
Center for Advanced Materials Processing, Clarkson University, Box 5814, Potsdam, New York 13699–5814
Min Che Chon
Affiliation:
Chon International, 128–27 Tangju–dong, Chongno–ku, Seoul 110–071, Korea
Get access

Abstract

The synthesis of uniform colloidal crystalline particles of Zr- and Sr-doped barium titanates at a low temperature of 85 °C by the controlled double-jet precipitation (CDJP) technique is described. The stoichiometry of the powders can be precisely controlled by adjusting the compositions of the starting reactant solutions. Barium titanate with 20% Zr substitution, sintered at 1275 °C, satisfied the requirements for the Y5V multilayer capacitors application. The grain sizes are uniform and small, ranging from 1 to 3 μm. Solids with an extremely sharp change in the dielectric constant as a function of temperature, which are suitable for thermal IR detectors application, can be obtained when both Sr and Zr are incorporated as dopants.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Neirman, S. M., J. Mater. Sci. 23, 39733980 (1988).CrossRefGoogle Scholar
2.Gherardi, P. and Matijević, E., Colloids Surf. 32, 257274 (1988).CrossRefGoogle Scholar
3.Gherardi, P. and Matijević, E., Spherical Titanate Particles by Homogeneous Precipitation, U.S. Patent 4755 373, July 5, 1988.Google Scholar
4.Sakka, S. and Kokubo, T., Jpn. J. Appl. Phys. 22 (Suppl. 22–2), 37 (1983).CrossRefGoogle Scholar
5.Nosaka, Y., Jimbo, M., Aizawa, M., and Fujii, N., J. Mater. Sci. Lett. 10, 406407 (1991).CrossRefGoogle Scholar
6.Flaschen, S. S., J. Am. Chem. Soc. 77, 6194 (1955).CrossRefGoogle Scholar
7.Mazdiyasni, K. S., Dolloff, R. T., and Smith, J.S., J. Am. Ceram. Soc. 52, 523526 (1969).CrossRefGoogle Scholar
8.Ritter, J. J., Roth, R. S., and Blendell, J. E., J. Am. Ceram. Soc. 69, 155162 (1986).CrossRefGoogle Scholar
9.Kiss, K., Magder, J., Vukasovich, M. S., and Lockhart, R. J., J. Am. Ceram. Soc. 49, 291299 (1966).CrossRefGoogle Scholar
10.Abe, K., Aoki, M., Rikimaru, H., Ito, T., Hidaka, K., and Segawa, K., Process for Processing a Composition Which Includes Perovskite Compounds, U.S. Patent 4 643 984, February 17, 1987.Google Scholar
11.Dawson, W. J. and Swartz, S.L., Process for Processing Sub-Micron Ceramic Powders of Perovskite Compounds, International Patent WO90/06291, June 14, 1990.Google Scholar
12.Dawson, W. J., Ceram. Bull. 67, 16731678 (1988).Google Scholar
13.Osbond, P.C. and Whatmore, R.W., Ceram. Trans. 22, 491496 (1991).Google Scholar
14.Hennings, D. F. K. and Schreinemacher, H. J., Method of Manufacturing Barium Titanate, U.S. Patent 5 009 876, April 23, 1991.Google Scholar
15.Micheli, A.L., Ceram. Int. 15, 131139 (1989).CrossRefGoogle Scholar
16.Her, Y-S., Matijević, E., and Chon, M. C., J. Mater. Res. 10, 31063114 (1995).CrossRefGoogle Scholar
17.Whatmore, R.W., Osbond, P.C., and Shorrocks, N.M., Ferroelectrics 76, 351367 (1987).CrossRefGoogle Scholar
18.Whatmore, R.W., Ferroelectrics 118, 241259 (1991).CrossRefGoogle Scholar