Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T16:36:35.604Z Has data issue: false hasContentIssue false

Conventional and microwave sintering of condensed silica fume

Published online by Cambridge University Press:  03 March 2011

Jan Majling
Affiliation:
Department of Ceramics, Slovak Technical University, 812 37 Bratislava, Slovakia
Peter Znasik
Affiliation:
Department of Ceramics, Slovak Technical University, 812 37 Bratislava, Slovakia
Dinesh Agrawal
Affiliation:
Intercollege Materials Research Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802-4801
Jiping Cheng
Affiliation:
Intercollege Materials Research Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802-4801
Rustum Roy
Affiliation:
Intercollege Materials Research Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802-4801
Get access

Abstract

Condensed silica fume, a by-product from the production of silicon alloys, was sintered by (i) conventional heating in a dilatometric furnace, both at constant heating rate and isothermal heating, and (ii) by the microwave heating. The dense products with relative density up to 95% of theoretical can be obtained only by short runs at high heating rates, preferentially accomplished by the microwave treatment. Prolonged heating leads to the devitrification of the original glassy phase to cristobalite, accompanied by an arrest of densification.

Type
Rapid Communication
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Aitcin, P-C., in Condensed Silica Fume (Brocure) (University de Sherbrooke, Canada), pp. 1619.Google Scholar
2Silica Fume in Concrete, ACI Committee 234, March 1991.Google Scholar
3Saks, M. D. and Tseng, Tseung-Yuen, J. Am. Ceram. Soc. 67, 532 (1984).CrossRefGoogle Scholar
4Clasen, R., J. Non-Cryst. Solids 89, 335 (1987).CrossRefGoogle Scholar
5Rahaman, M. N., DeJonghe, L.C., Scherer, G. W., and Brook, R. J., J. Am. Ceram. Soc. 70, 766 (1987).CrossRefGoogle Scholar
6Jagota, A., Mikeska, K. R., and Bordia, R. K., J. Am. Ceram. Soc. 73, 2266 (1990).CrossRefGoogle Scholar
7Giess, E. A., Fletcher, J. P., and Herron, C. W., J. Am. Ceram. Soc. 67, 549 (1984).CrossRefGoogle Scholar
8Wagstoff, F. E. and Richards, K. J., J. Am. Ceram. Soc. 49, 118 (1966).CrossRefGoogle Scholar
9Johnson, D. W. Jr., Rabinowich, E. M., MacChesney, J.B., and Vogel, E. M., J. Am. Ceram. Soc. 66, 688 (1983).CrossRefGoogle Scholar
10Calacal, E. J. and Whittemore, O. J., Am. Ceram. Soc. Bull. 66, 790 (1987).Google Scholar
11Takamitsu, F. and Messing, G. L., J. Non-Cryst. Solids 143, 133 (1992).Google Scholar
12McMillan, P.W., in Glass Ceramics in Non-Metallic Solids, 2nd ed., edited by Roberts, J.P. and Poper, P. (Academic Press, London, 1979), p. 49.Google Scholar
13Wagstaff, F. E. and Richards, K. J., J. Am. Ceram. Soc. 48, 382 (1965).Google Scholar
14Cheng, J., Qiu, J., Zhon, J., and Ye, N., in Microwave Processing of Materials III, edited by Beatty, R.L., Sutton, W. H., and Iskander, M.F. (Mater. Res. Soc. Symp. Proc. 269, Pittsburgh, PA, 1992), p. 334.Google Scholar
15Sutton, W. H., ibid., p. 3.Google Scholar
16Zheng, J. and Reed, J. S., Bull. Am. Ceram. Soc. 71, 1410 (1992).Google Scholar
17Lorenson, C. P., Patterson, M.C. L., Ristro, G., and Kimber, R., in Microwave Processing of Materials III, edited by Beatty, R.L., Sutton, W. H., and Iskander, M.F. (Mater. Res. Soc. Symp. Proc. 269, Pittsburgh, PA, 1992), p. 129.Google Scholar
18Morita, K., Nguyen, V. Q., Nakaoka, R., and Mackenzie, J.D., ibid., p. 471.Google Scholar