Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T03:24:02.395Z Has data issue: false hasContentIssue false

Correlation between fracture surface morphology and toughness in Zr-based bulk metallic glasses

Published online by Cambridge University Press:  31 January 2011

Jin-Yoo Suh
Affiliation:
W.M. Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, California 91125; and Korea Institute of Science & Technology, Seoul 136-791, Republic of Korea
R. Dale Conner*
Affiliation:
California State University Northridge, Northridge, California 91330
C. Paul Kim
Affiliation:
W.M. Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, California 91125; and Liquidmetal Technologies, Rancho Santa Margarita, California 92688
William L. Johnson
Affiliation:
W.M. Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, California 91125
*
a)Address all correspondence to this author. e-mail: rdconner@csun.edu
Get access

Abstract

Fracture surfaces of Zr-based bulk metallic glasses of various compositions tested in the as-cast and annealed conditions were analyzed using scanning electron microscopy. The tougher samples have shown highly jagged patterns at the beginning stage of crack propagation, and the length and roughness of this jagged pattern correlate well with the measured fracture toughness values. These jagged patterns, the main source of energy dissipation in the sample, are attributed to the formation of shear bands inside the sample. This observation provides strong evidence of significant “plastic zone” screening at the crack tip.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Conner, R.D., Johnson, W.L., Paton, N.E., Nix, W.D.Shear bands and cracking of metallic glass plates in bending. J. Appl. Phys. 94, (2)904 (2003)Google Scholar
2.Conner, R.D., Li, Y., Nix, W.D., Johnson, W.D.Shear band spacing under bending of Zr-based metallic glass plates. Acta Mater. 52, 2429 (2004)CrossRefGoogle Scholar
3.Ashby, M.F., Greer, A.L.Metallic glasses as structural materials. Scr. Mater. 54, 321 (2006)CrossRefGoogle Scholar
4.Peker, A., Johnson, W.L.A highly processable metallic-glass Zr41.2Ti13.8Cu12.5Ni10Be22.5. Appl. Phys. Lett. 63, 2342 (1993)CrossRefGoogle Scholar
5.Lowhaphandu, P., Lewandowski, J.J.Fracture toughness and notched toughness of bulk amorphous alloy: Zr–Ti–Ni–Cu–Be. Scr. Mater. 38, 1811 (1998)Google Scholar
6.Gilbert, C.J., Schroeder, V., Ritchie, R.O.Mechanisms for fracture and fatigue-crack propagation in a bulk metallic glass. Metall. Mater. Trans. A 30, 1739 (1999)CrossRefGoogle Scholar
7.Suh, D., Dauskardt, R.H.Effects of open-volume regions on relaxation time-scales and fracture behavior of a Zr–Ti–Ni–Cu–Be bulk metallic glass. J. Non-Cryst. Solids 317, 181 (2003)Google Scholar
8.Suh, D., Dauskardt, R.H.Flow and fracture in Zr-based bulk metallic glasses. Ann. Chim. Sci. Mat. 27, 25 (2002)CrossRefGoogle Scholar
9.Conner, R.D., Rosakis, A.J., Johnson, W.L., Owen, D.M.Fracture toughness determination for a beryllium-bearing bulk metallic glass. Scr. Mater. 37, 1373 (1997)CrossRefGoogle Scholar
10.Flores, K.M., Dauskardt, R.H.Enhanced toughness due to stable crack tip damage zones in bulk metallic glasses. Scr. Mater. 41, 937 (1999)CrossRefGoogle Scholar
11.Johnson, W.L.Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, (10)42 (1999)CrossRefGoogle Scholar
12.Tandaiya, P., Narasimhan, R., Ramamurty, U.Mode I crack tip fields in amorphous materials with application to metallic glasses. Acta Mater. 55, 6541 (2007)Google Scholar
13.Kim, C.P., Suh, J.Y., Wiest, A., Lind, M.L., Conner, R.D., Johnson, W.L.Fracture toughness study of new Zr-based Be-bearing bulk metallic glasses. Scr. Mater. 60, 80 (2009)CrossRefGoogle Scholar
14.Xi, X.K., Zhao, D.Q., Pan, M.X., Wang, W.H., Wu, Y., Lewandowski, J.J.Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 94, 125510 (2005)Google Scholar
15.Lewandowski, J.J., Wang, W.H., Greer, A.L.Intrinsic plasticity or brittleness of metallic glass. Philos. Mag. Lett. 85, 77 (2005)Google Scholar
16.Gilbert, C.J., Ritchie, R.O., Johnson, W.L.Fracture toughness and fatigue-crack propagation in a Zr–Ti–Ni–Cu–Be bulk metallic glass. Appl. Phys. Lett. 71, 476 (1997)Google Scholar
17.Tatschl, A., Gilbert, C.J., Schroeder, V., Pippan, R., Ritchie, R.O.Stereophotogrammetric investigation of overload and cyclic fatigue fracture surface morphologies in a Zr–Ti–Ni–Cu–Be bulk metallic glass. J. Mater. Res. 15, 898 (2000)CrossRefGoogle Scholar
18.Schuh, C.A., Hufnagel, T.C., Ramamurty, U.Overview No. 144—Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007)CrossRefGoogle Scholar
19.Argon, A.S., Salama, M.Mechanism of fracture in glassy materials capable of some inelastic deformation. Mater. Sci. Eng. 23, 219 (1976)Google Scholar
20.Hahn, G.T., Rosenfield, A.R.Local yielding and extension of a crack under plane stress. Acta Metall. 13, 293 (1965)Google Scholar
21.Schneibel, J.H., Horton, J.A., Munroe, P.R.Fracture toughness, fracture morphology and crack-tip plastic zone of a Zr-based bulk amorphous alloy. Metall. Mater. Trans. A 32, 2819 (2001)CrossRefGoogle Scholar
22.Spaepen, F., Turnbull, D.Mechanism for flow and fracture of metallic glasses. Scr. Metall. 8, 563 (1974)CrossRefGoogle Scholar
23.Leamy, H.J., Chen, H.S., Wang, T.T.Plastic-flow and fracture of metallic glass. Metall. Trans. 3, 699 (1972)Google Scholar
24.Alpas, A.T., Edwards, L., Reid, C.N.Fracture and fatigue-crack propagation in a nickel-base metallic-glass. Metall. Trans. A 20, 1395 (1989)CrossRefGoogle Scholar
25.Zhang, Z.F., Eckert, J., Schultz, L.Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167 (2003)Google Scholar
26.Davis, L.A.Fracture toughnesses of metallic glasses. Metall. Trans. A 10, 235 (1979)Google Scholar
27.Lowhaphandu, P., Ludrosky, L.A., Montgomery, S.L., Lewandowski, J.J.Deformation and fracture toughness of a bulk amorphous Zr–Ti–Ni–Cu–Be alloy. Intermetallics 8, 487 (2000)CrossRefGoogle Scholar
28.Nagendra, N., Ramamurty, U., Goh, T.T., Li, Y.Effect of crystallinity on the impact toughness of a La-based bulk metallic glass. Acta Mater. 48, 2603 (2000)CrossRefGoogle Scholar
29.Gilbert, C.J., Lippmann, J.M., Ritchie, R.O.Fatigue of a Zr–Ti–Cu–Ni–Be bulk amorphous metal: Stress/life and crack-growth behavior. Scr. Mater. 38, 537 (1998)CrossRefGoogle Scholar
30.Hess, P.A., Dauskardt, R.H.Mechanisms of elevated temperature fatigue crack growth in Zr–Ti–Cu–Ni–Be bulk metallic glass. Acta Mater. 52, 3525 (2004)Google Scholar
31.Gao, H.3-dimensional slightly nonplanar cracks. J. Appl. Mech. 59, 335 (1992)CrossRefGoogle Scholar
32.Cotterell, B., Rice, J.R.Slightly curved or kinked cracks. Int. J. Fract. 16, 155 (1980)CrossRefGoogle Scholar
33.Anderson, T.L.Fracture Toughness Testing of Metals, Fracture Mechanics: Fundamentals and Applications 1st ed. (CRC Press, Boca Raton, FL 1991)431Google Scholar