Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T00:16:57.387Z Has data issue: false hasContentIssue false

Crack propagation thresholds: A measure of surface energy

Published online by Cambridge University Press:  31 January 2011

Robert F. Cook
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
Get access

Abstract

Crack propagation thresholds in brittle materials are explained by consideration of the work done by the applied loading and that needed to create new surfaces as a crack propagates. The threshold mechanical energy release rate is shown to be a measure of the equilibrium surface energy of the material, dependent on the chemical environment. For applied loadings greater than those needed to maintain equilibrium the surface energy term introduces nonlinearities into the crack propagation characteristics. Any surface force or lattice trapping behavior at the crack tip will not influence the observed threshold provided the crack tip remains invariant on crack extension. A simple indentation/strength technique is demonstrated that permits the surface energy in the equilibrium state to be estimated. The technique is applied to the propagation of cracks in sapphire and the surface energy in water estimated as 1.42 J m−2, suggesting that the surfaces in water are stabilized by interactions stronger than van der Waals forces or hydrogen bonding alone.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Wiederhorn, S. M. and Bolz, L. H., J. Am. Ceram. Soc. 53, 543 (1970).CrossRefGoogle Scholar
2Wiederhorn, S. M. and Johnson, H., J. Am. Ceram. Soc. 56, 192 (1973).CrossRefGoogle Scholar
3Lawn, B. R., Jakus, K. and Gonzalez, A. C., J. Am. Ceram. Soc. 68, 25 (1985).CrossRefGoogle Scholar
4Clarke, D. R., Lawn, B. R., and Roach, D. H., in Fracture Mechanics of Ceramics, edited by Bradt, R. C., Evans, A. G., Hasselman, D. P. H., and Lange, F. F. (Plenum, New York, 1986), Vol. 8, pp. 341350.CrossRefGoogle Scholar
5Roach, D. H., Heuckeroth, D. M., and Lawn, B. R., J. Colloid Interface Sci. (in press).Google Scholar
6Lawn, B. R., Appl. Phys. Lett. 47, 809 (1985).CrossRefGoogle Scholar
7Michalske, T. A., in Fracture Mechanics of Ceramics, edited by Bradt, R. C., Evans, A. G., Hasselman, D. P. H., and Lange, F. F. (Plenum, New York, 1983), Vol. 5, pp. 277289.CrossRefGoogle Scholar
8Israelachvili, J. N., Intermodular and Surface Forces (Academic, Orlando, 1985).Google Scholar
9Johnson, K. L., Kendall, K. and Roberts, A. D., Proc. R. Soc. London Ser. A324, 301 (1971).Google Scholar
10Maugis, D., J. Mater. Sci. 20, 3041 (1985).CrossRefGoogle Scholar
11Michalske, T. A. and Fuller, E. R., J. Am. Ceram. Soc. 68, 586 (1985).CrossRefGoogle Scholar
12Inagaki, M., Urashima, K., Toyomasu, S., Goto, Y., and Sakai, M., J. Am. Ceram. Soc. 68, 704 (1985).CrossRefGoogle Scholar
13Obreimoff, J. W., Proc. R. Soc. London Ser. A 217, 290 (1930).Google Scholar
14Hockey, B. J., in Ref. 7, Vol. 6, pp. 637658.Google Scholar
15Griffith, A. A., Philos. Trans. R. Soc. London Ser. A 221, 163 (1920).Google Scholar
16Rice, J. R., J. Mech. Phys. Solids 26, 61 (1978).CrossRefGoogle Scholar
17Lawn, B. R., J. Mater. Sci. 10, 469 (1975).CrossRefGoogle Scholar
18Fuller, E. R. Jr, and Thomson, R. M., in Fracture Mechanics of Ceramics, edited by Bradt, R. C., Hasselman, D. P. H., and Lange, F. F. (Plenum, New York, 1978), Vol. 4, pp. 507548.Google Scholar
19Thomson, R. M., J. Mater. Sci. 15, 1014 (1980).CrossRefGoogle Scholar
20Fuller, E. R. Jr, and Thomson, R.M., J. Mater. Sci. 15, 1027 (1980).CrossRefGoogle Scholar
21Fuller, E. R. Jr, Thomson, R. M., and Lawn, B. R., Acta Metall. 28, 1407 (1980).CrossRefGoogle Scholar
22Chudnovsky, A. and Moet, A., J. Mater. Sci. 20, 630 (1985).CrossRefGoogle Scholar
23Lawn, B. R., J. Mater. Sci. 12, 1950 (1977).CrossRefGoogle Scholar
24Lawn, B. R. and Wilshaw, T. R., Fracture of Brittle Solids (Cambridge U.P., Cambridge, 1975).Google Scholar
25Broek, D., Elementary Engineering Fracture Mechanics, (Martinus Nijhoff, The Hague, 1974), 3rd ed.Google Scholar
26Fuller, E. R., Lawn, B. R., and Cook, R. F., J. Am. Ceram. Soc. 66, 314 (1983).CrossRefGoogle Scholar
27Lawn, B. R., Marshall, D. B., Anstis, G. R., and Dabbs, T. P., J. Mater. Sci. 16, 2846 (1981).CrossRefGoogle Scholar
28Marshall, D. B. and Lawn, B. R., J. Am. Ceram. Soc. 63, 532 (1980).CrossRefGoogle Scholar
29The improved Euler Method, see, for example, Kreyszig, E., Advanced Engineering Mathematics (Wiley, New York, 1972), 3rd ed.Google Scholar
30Anstis, G. R., Chantikul, P., Lawn, B. R., and Marshall, D. B., J. Am. Ceram. Soc. 64, 532 (1981).CrossRefGoogle Scholar
31Marshall, D. B., Am. Ceram. Soc. Bull. 59, 551 (1980).Google Scholar
32Roark, R. J. and Young, W. C., Formulas for Stress and Strain (McGraw-Hill, Japan, 1976).CrossRefGoogle Scholar
33Cook, R. F., Lawn, B. R., and Anstis, G. R., J. Mater. Sci. 17, 1108 (1982).CrossRefGoogle Scholar
34Wiederhorn, S. M., J. Am. Ceram. Soc. 52, 485 (1969).CrossRefGoogle Scholar
35Cook, R. F., Ph.D. thesis, School of Physics, University of New South Wales, Australia, 1985.Google Scholar
36Cook, R. F. (unpublished).Google Scholar
37Freiman, S. W. (privatecommunication).Google Scholar
38Roach, D. H. (unpublished).Google Scholar
39Newman, J. C. and Raju, I. S., Eng. Fract. Mech. 15, 185 (1981).CrossRefGoogle Scholar
40Cook, R. F. and Roach, D. H., J. Mater. Res. 1, 589 (1986).CrossRefGoogle Scholar
41Cook, R. F., Lawn, B. R., and Fairbanks, C. J., J. Am. Ceram. Soc. 68, 604 (1985).CrossRefGoogle Scholar
42Cook, R. F., Lawn, B. R., and Fairbanks, C. J., J. Am. Ceram. Soc. 68, 616 (1985).CrossRefGoogle Scholar
43Michalske, T. A. (unpublished).Google Scholar
44Gennes, P. G. de, Rev. Mod. Phys. 57, 827 (1985).CrossRefGoogle Scholar