Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T01:35:34.219Z Has data issue: false hasContentIssue false

Crack-face fiber bridging: Finite element analysis, analytical model, and experimental result

Published online by Cambridge University Press:  31 January 2011

Jian-Wu Cao
Affiliation:
Department of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi-shi 441, Japan
Mototsugu Sakai
Affiliation:
Department of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi-shi 441, Japan
Get access

Abstract

Prior to considering crack-face bridging, the stress/strain-field ahead of the crack tip in the compact tension (CT) geometry is numerically assessed by means of finite element method (FEM). The stress field along the crack line which has a decreasing profile of tensile stresses from the crack tip converts to monotonically increasing compressive stresses toward the back face of the CT specimen via a rotational center. Based on these stress-field analyses, a novel crack-face bridging model for fiber-reinforced brittle matrix composites is presented. The application of the model to the experimental result of a 2D-C/C composite enables one to estimate the crack-face fiber bridging stresses and their distribution profile.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sakai, M. and Bradt, R. C., Int. Mater. Rev. 38, 53 (1993).Google Scholar
2.Sakai, M., in The Centennial Issue of The Ceramic Society of Japan (1991), Vol. 99, p. 983.Google Scholar
3.Wanner, A., Rizzo, R., and Kromp, K., in Toughening Mechanisms in Quasi-Brittle Materials, edited by Shah, S. P. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991), pp. 405423.CrossRefGoogle Scholar
4.Thouless, M. D., J. Am. Ceram. Soc. 71, 408 (1988).CrossRefGoogle Scholar
5.Faber, K. T., Gu, W-H., Cai, H., and Winholtz, R. A., in Toughening Mechanisms in Quasi-Brittle Materials, edited by Shah, S. P. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991), pp. 317.CrossRefGoogle Scholar
6.Harris, B., Metal. Sci. August-September, 351 (1980).Google Scholar
7.Hsueh, C. H. and Becher, P. F., J. Am. Ceram. Soc. 71, C234 (1988).Google Scholar
8.Sakai, M., Miyajima, T., and Inagaki, M., Composite Sci. Technol. 40, 231 (1991).CrossRefGoogle Scholar
9.Steinbrech, R. W., Reichl, A, and Schaarwächter, W., J. Am. Ceram. Soc. 73, 2009 (1990).CrossRefGoogle Scholar
10.Foote, R. M. L., Mai, Y. W., and Cotterell, B., J. Mech. Phys. Solids 34, 593 (1986).CrossRefGoogle Scholar
11.Cotterell, B. and Mai, Y. M., J. Mater. Sci. 22, 2734 (1987).CrossRefGoogle Scholar
12.Ballarini, R., Shah, S. P., and Keer, L. M., Eng. Fract. Mech. 20, 433 (1984).Google Scholar
13.Foote, R. M. L., Mai, Y. W., and Cotterell, B., J. Mech. Phys. Solids. 34, 593 (1986).CrossRefGoogle Scholar
14.Mai, Y. W. and Lawn, B.R., J. Am. Ceram. Soc. 70, 289 (1987).Google Scholar
15.Hu, X. Z., Lutz, E. H., and Swain, M. V., J. Am. Ceram. Soc. 74, 1828 (1991).Google Scholar
16.Hu, X. Z. and Mai, Y. W., J. Mater. Sci. 27, 3502 (1992).Google Scholar
17.Lutz, E. H. and Sakai, M., J. Am. Ceram. Soc. 76, 3113 (1994).Google Scholar
18.Suzuki, T. and Sakai, M., Int. J. Fract. 65, 329 (1994).Google Scholar
19.Rolfe, S. T. and Barsom, J. M., Fracture and Fatique Control in Structures (Prentice-Hall, Inc., Englewood Cliffs, NJ, 1977), Chap. 1.Google Scholar
20.Chen, D. L., Weiss, B., and Stickler, R., Int. J. Fract. 55, R3 (1992).Google Scholar
21.Chen, D. L., Weiss, B., Stickler, R., Hadroboletz, A., and Wang, Z. G., in Proceedings of 1st Materials Science Symposium, edited by Chen, D. L.et al. [Chinese Association of Science and Technology in Austria (CASTA), Vienna, 1993], pp. 2031.Google Scholar
22.Chen, D. L., Weiss, B., and Stickler, R., Int. J. Fract. 55, R3 (1992).CrossRefGoogle Scholar
23.Liu, C. H. and Mang, H. A., Int. J. Fract. 63, R67 (1993).Google Scholar
24.Zok, Frank, in Toughening Mechanisms in Quasi-Brittle Materials, edited by Shah, S. P. (Kluwer Academic, Dordrecht, The Netherlands, 1991), pp. 425439.Google Scholar
25.Amazigo, J. C. and Budiansky, B., J. Mech. Phys. Solids. 36, 581 (1988)CrossRefGoogle Scholar
26.Cao, J. W. and Sakai, M., Carbon (1996, in press).Google Scholar
27.Budiansky, B., Amazigo, J. C., and Evans, A. G., J. Mech. Phys. Solids. 36, 167 (1988).CrossRefGoogle Scholar
28.Farquhar, D. S., Phoenix, S. L., and Raj, R., Acta Metall. Mater. 42, 65 (1994).CrossRefGoogle Scholar
29.Sih, G. C., Mechanics of Fracture Initiation and Propagation (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991), pp. 213270.Google Scholar