Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T01:11:16.706Z Has data issue: false hasContentIssue false

Creep of Lanthanum Gallate

Published online by Cambridge University Press:  31 January 2011

William E. Luecke*
Affiliation:
Ceramics Division, National Institute of Standards & Technology, Gaithersburg, Maryland 20899
Timothy R. Armstrong
Affiliation:
Metals & Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
*
a)Address all correspondence to this author. e-mail: william.luecke@nist.gov
Get access

Abstract

Strontium- and magnesium-doped lanthanum gallate (LSGM) was deliberately prepared to give A-site deficient nonstoichiometry with compositions (La0.9Sr0.1)z(Ga0.8Mg0.2)O3-δ (z = 1.0, 0.98, and 0.95). Creep tests in four-point bending for 950 °C < T < 1350 °C and 15 MPa < σ < 75 MPa in air demonstrated that all three compositions shared a common stress dependence, n= 1.49 ± 0.10, and a common apparent activation energy, Q = 426 ± 9 kJ/mol. Despite this agreement, the creep rates of the different compositions depended on grain size in different ways: p = 3.1 ± 0.2 for z = 0.98, and p = 1.9 ± 0.1 for z = 0.95. The measured apparent activation energy, Q, for creep is similar, though statistically significantly smaller, than that measured in another LSGM. Both are nearly twice as large as reported activation energies for cation impurity diffusion. The absolute magnitude of the creep rates, after correction for grain size, were 30 to 100 times slower than in another LSGM of similar composition.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ishihara, T., Matsuda, H., and Takita, Y., J. Am. Chem. Soc. 116, 3801 (1994).CrossRefGoogle Scholar
Wolfenstine, J., Solid State Ionics 126, 293 (1999).CrossRefGoogle Scholar
Cannon, W.R. and Langdon, T.G., J. Mater. Sci. 18, 1 (1983).Google Scholar
Hynes, A. and Doremus, R., Crit. Rev. Solid State Mater. Sci. 21, 129 (1996).CrossRefGoogle Scholar
Li, P., Karato, S-I., and Wang, Z., Phys. Earth Planet. Inter. 95, 19 (1996).CrossRefGoogle Scholar
Yamada, H., J. Mater. Sci. 19, 2639 (1984).Google Scholar
Routbort, J.L., Goretta, K.C., Cook, R.E., and Wolfenstine, J., Solid State Ionics 129, 53 (2000).CrossRefGoogle Scholar
Wolfenstine, J., Huang, P., and Petric, A., J. Electrochem. Soc. 147, 1668 (2000).CrossRefGoogle Scholar
Cook, R.E., Goretta, K.C., Wolfenstine, J., Nash, P., and Routbort, J.L., Acta Mater. 47, 2969 (1999).Google Scholar
Wolfenstine, J., Goretta, K.C., Cook, R.E., and Routbort, J.L., Solid State Ionics 92, 75 (1996).Google Scholar
Park, E.T., Nash, P., Wolfenstine, J., Goretta, K.C., and Routbort, J.L., J. Mater. Sci. 14, 523 (1999).Google Scholar
Carry, C. and Mocellin, A., J. Am. Ceram. Soc. 69, C215 (1986).CrossRefGoogle Scholar
Majkic, G., Wheeler, L., and Salama, K., Acta Mater. 48, 1907 (2000).Google Scholar
Nabarro, F.R.N., in Report of a Conference on Strength of Solids (Physical Society) (Great Britain, 1948), pp. 7590.Google Scholar
Herring, C., J. Appl. Phys. 21, 437 (1950).CrossRefGoogle Scholar
Coble, R.L., J. Appl. Phys. 34, 1679 (1963).CrossRefGoogle Scholar
Langdon, T.G., Acta Metall. Mater. 42, 2437 (1994).Google Scholar
Ruano, O.A., Wadsworth, J., Wolfenstine, J., and Sherby, O.D., Mater. Sci. Eng. A A165, 133 (1993).CrossRefGoogle Scholar
Gifkins, R.C., Metall. Trans. A 7A, 1225 (1976).CrossRefGoogle Scholar
Raj, R. and Ashby, M.F., Metall. Trans. 2, 1113 (1971).CrossRefGoogle Scholar
Arzt, E., Ashby, M.F., and Verrall, R.A., Acta Metall. 31, 1977 (1983).Google Scholar
Ashby, M.F. and Verrall, R.A., Acta Metall. 21, 149 (1973).CrossRefGoogle Scholar
Wang, J.N., Acta Mater. 48, 1517 (2000).Google Scholar
Khattak, C.P. and Cox, D.E., Mater. Res. Bull. 12, 463 (1977).CrossRefGoogle Scholar
Baskaran, S., Lewinsohn, C.A., Chou, Y-S., Qian, M., Stevenson, J.W., and Armstrong, T.R., J. Mater. Sci. 34, 3913 (1999).CrossRefGoogle Scholar
Stevenson, J.W., Armstrong, T.R., Pederson, L.R., Li, J., Lewinsohn, C.A., and Baskaran, S., Solid State Ionics 113–115, 571 (1998).CrossRefGoogle Scholar
Mendelson, M.I., J. Am. Ceram. Soc. 52, 443 (1969).Google Scholar
Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature, Standard C1161-94, Annual Book of ASTM Standards (American Society for Testing and Materials, 1998), Vol. 15.01.Google Scholar
Hollenberg, G.W., Terwilliger, G.R., and Gordon, R.S., J. Am. Ceram. Soc. 54, 196 (1971).Google Scholar
Yoon, K.J., Wiederhorn, S.M., and Luecke, W.E., J. Am. Ceram. Soc. 83, 2017 (2000).Google Scholar
Chuang, T-J., J. Am. Ceram. Soc. 81, 2749 (1998).CrossRefGoogle Scholar
Chen, C-F. and Chuang, T-J., J. Am. Ceram. Soc. 73, 2366 (1990).CrossRefGoogle Scholar
Chuang, T-J., J. Mater. Sci. 21, 165 (1986).CrossRefGoogle Scholar
Huang, K., Tichy, R.S., and Goodenough, J.B., J. Am. Ceram. Soc. 81, 2565 (1998).Google Scholar
Djurado, E. and Labeau, M., J. Eur. Ceram. Soc. 18, 1397 (1998).Google Scholar
Routbort, J.L., Goretta, K.C., López, A.R. de Arellano, and Wolfenstine, J., Scr. Mater. 38, 315 (1998).Google Scholar
Luecke, W.E. and Wiederhorn, S.M., J. Am. Ceram. Soc. 80, 831 (1997).CrossRefGoogle Scholar
Ishihara, T., Kilner, J.A., Honda, M., Sakai, N., Yokokawa, H., and Takita, Y., Solid State Ionics 113–115, 593 (1998).CrossRefGoogle Scholar
Khan, M.S., Islam, M.S., and Bates, D.R., J. Phys. Chem. B 102, 3099 (1998).CrossRefGoogle Scholar
Schulz, O. and Martin, M., Solid State Ionics, 135, 549 (2000).Google Scholar
Schulz, O. and Martin, M., in Mass and Charge Transport in Inorganic Materials: Fundamentals to Devices, No. 29 in Advances in Science and Technology, edited by Vincenzini, P. and Buscaglia, V. (Techna, Faenza, Italy, 2000), pp. 8390.Google Scholar
Mendenhall, W. and Sincich, T., Statistics for Engineering and the Sciences (Dellen Publishing Company, New York, 1992), Chap. 13.Google Scholar