Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T23:31:23.694Z Has data issue: false hasContentIssue false

Crystal structure, electrical, and thermal properties of Ca0.5Th0.5VO4

Published online by Cambridge University Press:  31 January 2011

S. Nagabhusan Achary*
Affiliation:
Chemistry Division, Bhabha Atomic Research Centre Mumbai, 400 085 India
Avesh K. Tyagi
Affiliation:
Chemistry Division, Bhabha Atomic Research Centre Mumbai, 400 085 India
*
a) Address all correspondence to this author. e-mail: sachary@barc.gov.in
Get access

Abstract

Ca0.5Th0.5VO4 was prepared by a solid-state reaction of component oxides and characterized by powder x-ray diffraction (XRD) at ambient and higher temperatures and impedance spectroscopy. Crystal structure was refined by Rietveld refinements from powder XRD data. At room temperature, Ca0.5Th0.5VO4 has a zircon-type tetragonal (I41/amd) lattice with unit cell parameters: a = 7.2650(1) and c = 6.4460(1) Å. Despite the large charge difference, Ca2+ and Th4+ are statistically distributed over a single site. The crystal structure of Ca0.5Th0.5VO4 is built from the (Ca/Th)O8 (bisdisphenoid) and VO4 tetrahedra. The in situ high-temperature XRD studies on Ca0.5Th0.5VO4 revealed anisotropic thermal expansion behavior with coefficients of thermal expansion αc = 10.96 × 10−6/°C and αa = 5.32 × 10−6/°C. The impedance measurements carried out in the temperature range from ambient to 800 °C indicate semiconducting behavior with appreciable ionic conductivity above 400 °C. The activation energy obtained from the temperature-dependent AC conductivity data is ∼1.37 eV. In wider range of frequencies and temperatures, the relative permittivity of approximately 50 to 60 is observed for Ca0.5Th0.5VO4.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kaminskii, A.A.: Laser Crystals, 2nd ed. (Springer-Verlag, Berlin, 1990).CrossRefGoogle Scholar
2.Kolitschi, U. and Holtstam, D.: Crystal chemistry of REEXO4 compounds (X = P, As, V). II. Review of REEXO4 compounds and their stability fields. Eur. J. Mineral. 16, 117 (2004).CrossRefGoogle Scholar
3.Wilk, G.D., Wallace, R.M., and Anthony, J.M.: Hafnium and zirconium silicates for advanced gate dielectrics. J. Appl. Phys. 87, 484 (2000).CrossRefGoogle Scholar
4.Skanthakumar, S., Loong, C.K., Soderholm, L., Richardson, J.W. Jr, Abraham, M.M., and Boatner, L.A.: Quadrupolar effects in the temperature dependence of the lattice parameters of HoP1-xVxO4. Phys. Rev. B: Condens. Matter 51, 5644 (1995).CrossRefGoogle ScholarPubMed
5.Unoki, H. and Sakudo, T.: Dielectric anomaly and improper anti-ferroelectricity at Jahn-Teller transitions in rare-earth vanadates. Phys. Rev. Lett. 38, 137 (1977).CrossRefGoogle Scholar
6.Cho, I-S., Choi, G.K., An, J-S., Kim, J-R., and Hong, K.S.: Sintering, microstructure and microwave dielectric properties of rare earth orthophosphates, RePO4 (Re = La, Ce, Nd, Sm, Tb, Dy, Y, Yb). Mater. Res. Bull. 44, 173 (2009).CrossRefGoogle Scholar
7.Gaur, K. and Lal, H.B.: Electrical transport in heavy rare-earth vanadates. J. Mater. Sci. 21, 2289 (1986).CrossRefGoogle Scholar
8.Li, L-P., Li, G-S., Xue, Y-F., and Inomata, H.: Structure, luminescence, and transport properties of EuVO4. J. Electrochem. Soc. 148, 145 (2001).CrossRefGoogle Scholar
9.Watanabe, A.: Highly conductive oxides, CeVO4, Ce1-xMxVO4–0.5x (M=Ca, Sr, Pb) and Ce1-yBiyVO4, with zircon-type structure prepared by solid-state reaction in air. J. Solid State Chem. 153, 174 (2000).CrossRefGoogle Scholar
10.Tsipis, E.V., Kharton, V.V., Vyshatko, N.P., Shaula, A.L., and Frade, J.R.: Stability and oxygen ionic conductivity of zircon-type Ce1-xAxVO4+δ (A=Ca, Sr). J. Solid State Chem. 176, 47 (2003).CrossRefGoogle Scholar
11.Mahapatra, S., Madras, G., and Guru Row, T.N.: Synthesis, characterization and photocatalytic activity of lanthanide (Ce, Pr and Nd) orthovanadates. Ind. Eng. Chem. Res. 46, 1013 (2007).CrossRefGoogle Scholar
12.Andreetti, G.D., Calestani, G., and Montenero, A.: The crystal structure of the Pb0.5Th0.5VO4 polymorphs with scheelite-, zircon- and huttonite-type structure. Z. Kristallogr. 168, 41 (1984).Google Scholar
13.Goubarda, F., Griesmarb, P., and Tabuteau, A.: Alpha self-irradiation effects in ternary oxides of actinides elements: The zircon-like phases AmIIIVO4 and AIINpIV(VO4)2 (A = Sr, Pb). J. Solid State Chem. 178, 1898 (2005).CrossRefGoogle Scholar
14.Nabar, M.A. and Mhatre, B.G.: Dimorphism in triple orthovanadates MIILaTh(VO4)3. (MII = Sr or Pb). J. Solid State Chem. 45, 135 (1982).CrossRefGoogle Scholar
15.Andreetti, G.D., Calestani, G., Montenero, A., and Bettinel, M.: Crystal growth from the system ThO2-PbO-V2O5. J. Cryst. Growth 71, 289 (1985).CrossRefGoogle Scholar
16.Roy, R., Agrawal, D.K., Alamo, J., and Roy, R.A.: [CTP]: A new structural family of near-zero expansion ceramics. Mater. Res. Bull. 19, 471 (1984).CrossRefGoogle Scholar
17.Quarton, M. and Kahn, A.: Crystal structure of potassium dithorium orthovanadate. Acta Crystallogr., Sect. B: Struct. Sci. 35, 2529 (1979).CrossRefGoogle Scholar
18.Topić, M., Kojić-Prodić, B., and Popović, S.: AgTh2(PO4)3—A new case of the non-hydrogen bonded phosphate ferroelectric. Czech. J. Phys. B20, 1003 (1970).CrossRefGoogle Scholar
19.Topic, M. and Kozic, B.: Ferroelectric properties of NaU2(PO4)3 single crystals. J. Appl. Crystallogr. 2, 230 (1969).CrossRefGoogle Scholar
20.Abrahams, S.C., Marsh, P., and Ravez, J.: Reinvestigation of the structure of tetracadmium sodium orthovanadate, Cd4Na (VO4)3. Acta Crystallogr., Sect. A: Found. Crystallogr. C39, 680 (1983).Google Scholar
21.Dickens, B., Schroeder, L.W., and Brown, W.E.: Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2. The crystal structure of pure β-Ca3(PO4)2. J. Solid State Chem. 10, 232 (1974).CrossRefGoogle Scholar
22.Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A: Found. Crystallogr. 32, 751 (1976).CrossRefGoogle Scholar
23.Rodriguez-Carvajal, J., Multi-Pattern Rietveld Refinement Program FullProf .2k, Version 3.30, June 2005, LLB.Google Scholar
24.Pitschke, W., Mattern, N., and Hermann, H.: Incorporation of microabsorption corrections into Rietveld analysis. Powder Diffr. 8(4), 223 (1993).CrossRefGoogle Scholar
25.Chakoumakos, B.C., Abraham, M.A., and Boatner, L.A.: Crystal structure refinements of zircon type MVO4 (M = Sc, Y, Ce, Pr, Nd, Tb, Ho, Er, Tm, Yb, Lu). J. Solid State Chem. 109, 197 (1994).CrossRefGoogle Scholar
26.Patwe, S.J., Achary, S.N., and Tyagi, A.K.: Lattice thermal expansion of zircon- type LuPO4 and LuVO4: A comparative study. Am. Mineral. 94, 98 (2009).CrossRefGoogle Scholar
27.Errandonea, D., Lacomba-Perales, R., Ruiz-Fuertes, J., Segura, A., Achary, S.N., and Tyagi, A.K.: High-pressure structural investigation of several zircon-type orthovanadates. Phys. Rev. B: Con-dens. Matter 79, 184104 (2009).CrossRefGoogle Scholar
28.Errandonea, D. and Manjon, F.J.: Pressure effects on the structural and electronic properties of ABX4 scintillating crystals. Prog. Mater. Sci. 53, 711 (2008).CrossRefGoogle Scholar
29.Subbarao, E.C., Agrawal, D.K., McKinstry, H.A., Sallese, C.W., and Roy, R.: Thermal expansion of compounds of zircon structure. J. Am. Ceram. Soc. 73, 1246 (1990).CrossRefGoogle Scholar
30.Atamanik, E. and Thangdurai, V.: Dielectric properties of Ga-doped Na0.5K0.5NbO3. J. Phys. Chem. C 113, 4648 (2009).CrossRefGoogle Scholar
31.Maxwell, J.C.: Electricity and Magnetism (Oxford Univ. Press, London, 1973).Google Scholar
32.Shannon, R.D., Oswald, R.A., Allik, T.H., Damen, J.P.M., Mateika, D., Wechsler, B.A., and Rossman, G.R.: Dielectric constants of YVO4, Fe-, Ge-, and V-containing garnets, the polariz-abilities of Fe2O3, GeO2, and V2O5, and the oxide additivity rule. J. Solid State Chem. 95, 313 (1991).CrossRefGoogle Scholar
33.Cao, W. and Randall, C.A.: Grain size and domain size relations in bulk ceramic ferroelectric materials. J. Phys. Chem. Solids 57, 1499 (1996).CrossRefGoogle Scholar
34.Koops, C.G.: On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. B: Condens. Matter 83, 121 (1951).CrossRefGoogle Scholar