Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T01:46:43.041Z Has data issue: false hasContentIssue false

Crystal Structure of Dielectric Ceramics in the La(Mg0.5Ti0.5)O3–BaTiO3 System

Published online by Cambridge University Press:  31 January 2011

M. Avdeev
Affiliation:
Department of Ceramic and Glass Engineering/UIMC, University of Aveiro, 3810–193 Aveiro, Portugal
M. P. Seabra
Affiliation:
Department of Ceramic and Glass Engineering/UIMC, University of Aveiro, 3810–193 Aveiro, Portugal
V. M. Ferreira
Affiliation:
Department of Ceramic and Glass Engineering/UIMC, University of Aveiro, 3810–193 Aveiro, Portugal
Get access

Extract

The crystal structure of microwave dielectric ceramics in the (1 − x)La(Mg0.5Ti0.5)O3 (LMT)–xBaTiO3 (BT) (0 ≤ x ≤ 0.9) system has been refined by Rietveld method using x-ray powder diffraction data. LMT and BT were found to form a solid solution in the whole compositional range. The increase of BaTiO3 content results in the following sequence of structure transformations of those solid solutions: P21/n (aac+, B-site ordered) → Pbnm (aac+) → I4/mcm (a0a0c) → Pm3m (a0a0a0). These structural changes are related to the disappearance of B-site cation ordering (x > 0.1), in-phase tilting (x > 0.3), and antiphase tilting (x > 0.5), respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kucheiko, S., Kim, H.J., Yeo, D.H., and Jung, H.J., Jpn. J. Appl. Phys. 35, 668 (1996).Google Scholar
2.Cho, S.Y., Ko, K.H., Hong, K.S., and Park, S.J., J. Korean Ceram. Soc. 34, 330 (1997).Google Scholar
3.Cho, S-Y., Seo, M-K., Hong, K.S., Park, S.J., and Kim, I-T., Mater. Res. Bull. 32, 725 (1997).CrossRefGoogle Scholar
4.Cho, S.Y., Kim, I.T., and Hong, K.S., Jpn. J. Appl. Phys. 37, 593 (1998).Google Scholar
5.Cho, S.Y., Hong, K.S., and Ko, K.H., Mater. Res. Bull. 34, 511 (1999).Google Scholar
6.Cho, S.Y., Kim, I.T., and Hong, K.S., J. Mater. Res. 14, 114 (1999).CrossRefGoogle Scholar
7.Lee, D.Y., Yoon, S.J., Yeo, J.H., Nahm, S., Paik, J.H., Whang, K.C., and Ahn, B.G., J. Mater. Sci. Lett. 19, 131 (2000).CrossRefGoogle Scholar
8.Cho, S.Y., Youn, H.J., Lee, H.J., and Hong, K.S., J. Am. Ceram. Soc. 84, 753 (2001).CrossRefGoogle Scholar
9.Levin, I., Chan, J.Y., Maslar, J.E., Vanderah, T.A., and Bell, S.M., J. Appl. Phys. 90, 905 (2001).Google Scholar
10.Kim, H.T., Byun, J.D., and Kim, Y., Mater. Res. Bull. 36, 963 (1998).CrossRefGoogle Scholar
11.Seabra, M.P. and Ferreira, V.M., Key Eng. Mater. 206–213, 1501 (2001).CrossRefGoogle Scholar
12.Cho, S.Y., Kim, C.H., Kim, D.W., Hong, K.S., and Kim, J.H., J. Mater. Res. 14, 2484 (1999).Google Scholar
13.German, M. and Kovba, L.M., Russ. J. Inorg. Chem. 28, 586 (1983).Google Scholar
14.Harshe, G., Bhalla, A.S., and Cross, L.E., Mater. Lett. 18, 173 (1994).CrossRefGoogle Scholar
15.Meden, A. and Ceh, M., Mater. Sci. Forum 773, 278–281 (1998).Google Scholar
16.Woodward, P.M., Acta Crystallogr. B 53, 32 (1997).CrossRefGoogle Scholar
17.Glazer, A.M., Acta Crystallogr. B 28, 3384 (1972).Google Scholar
18.Glazer, A.M., Acta Crystallogr. A 31, 756 (1975).Google Scholar
19.Colla, E.L., Reaney, I.M., and Setter, N., J. Appl. Phys. 74, 3414 (1993).Google Scholar
20.Reaney, I.M., Colla, E.L., and Setter, N., Jpn. J. Appl. Phys. 33, 3984 (1994).CrossRefGoogle Scholar
21.Reaney, I.M. and Ubic, R., Ferroelectrics 228, 23 (1999).CrossRefGoogle Scholar
22.Reaney, I.M., Wise, P., Ubic, R., Breeze, J., Alford, N.McN., Iddles, D., Cannell, D., and Price, T., Philos. Mag. A 81, 501 (2001).Google Scholar
23.Larson, A.C. and Dreele, R.B. Von, Los Alamos National Laboratory Report No. LAUR-86-748 (1987).Google Scholar
24.Groen, W.A., van, F.P.F. Berkel, and Ijdo, D.J.W., Acta Crystallogr. C42, 1472 (1986).Google Scholar
25.Shannon, R.D., Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
26.Carlsson, L., J. Mater. Sci. 5, 335 (1970).CrossRefGoogle Scholar
27.Ball, C.J., Begg, B.D., Cookson, D.J., Thorogood, G.J., and Vance, E.R., J. Solid State Chem. 139, 238 (1998).Google Scholar
28.Wong, T.K.Y., Kennedy, B.J., Howard, C.J., Hunter, B.A., and Vogt, T., J. Solid State Chem. 156, 255 (2001).Google Scholar
29.Becerro, A.I., Seifert, F., Angel, R.J., Rios, S., and McCammon, C., J. Phys.: Condens. Matter 12, 3661 (2000).Google Scholar
30.Hidaka, M., Hosogi, S., Ono, M., and Horai, K., Solid State Commun. 23, 503 (1977).CrossRefGoogle Scholar
31.Kennedy, B.J., Prodjosantoso, A.K., and Howard, C.J., J. Phys.: Condens. Matter 11, 6319 (1999).Google Scholar
32.Zhao, Y., J. Solid State Chem. 141, 121 (1998).CrossRefGoogle Scholar
33.Knight, K.S. and Bonanos, N., Mater. Res. Bull. 30, 347 (1995).CrossRefGoogle Scholar
34.Redfern, S.A.T., J. Phys.: Condens. Matter 8, 8267 (1996).Google Scholar
35.Kennedy, B.J., Howard, C.J., and Chakoumakos, B.C., J. Phys.: Condens. Matter 11, 1479 (1999).Google Scholar
36.Kennedy, B.J. and Hunter, B.A., Phys. Rev. B 58, 653 (1998).CrossRefGoogle Scholar
37.Kennedy, B.J., Howard, C.J., and Chakoumakos, B.C., Phys. Rev. B 59, 4023 (1999).CrossRefGoogle Scholar
38.Kennedy, B.J., Howard, C.J., and Chakoumakos, B.C., Phys. Rev. 60, 2972 (1999).Google Scholar
39.Howard, C.J., Knight, K.S., Kennedy, B.J., and Kisi, E.H., J. Phys.: Condens. Matter 12, L677 (2000).Google Scholar
40.Howard, C.J. and Stokes, H.T., Acta Crystallogr. B 54, 782 (1998).CrossRefGoogle Scholar
41.Harada, J., Pedersen, T., and Barnea, Z., Acta Crystallogr. A 26, 336 (1970).CrossRefGoogle Scholar