Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T03:33:38.907Z Has data issue: false hasContentIssue false

Crystallization of hafnia and zirconia during the pyrolysis of acetate gels

Published online by Cambridge University Press:  31 January 2011

Masatomo Yashima
Affiliation:
Department of Materials Science and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama-shi, 226–8502, Japan
Taka-aki Kato
Affiliation:
Materials and Structures Laboratory and Center for Materials Design, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama-shi, 226–8503, Japan
Masato Kakihana
Affiliation:
Materials and Structures Laboratory and Center for Materials Design, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama-shi, 226–8503, Japan
Mehmet Ali Gulgun
Affiliation:
Materials and Structures Laboratory and Center for Materials Design, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama-shi, 226–8503, Japan
Yohtaro Matsuo
Affiliation:
Department of Inorganic Materials, Faculty of Engineering, Tokyo Institute of Technology, 2–12–1, O-okayama, Meguro-ku, Tokyo 152–8552, Japan
Masahiro Yoshimura
Affiliation:
Center for Materials Design, Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama-shi, 226–8503, Japan
Get access

Abstract

Hafnia and zirconia gels were prepared by drying hafnyl or zirconyl acetate solutions. Hafnia and zirconia gels contain both hydroxyl group and bidentate acetates which are directly bonded to the metal ions. Thermal decomposition and crystallization behavior of the gels were investigated through XRD, FT-IR, and TEM. Hafnium-containing gels crystallized directly into stable monoclinic hafnia around 500–540 °C, while zirconium-containing gels first formed metastable tetragonal zirconia around 450 °C. The dissimilar crystallization behavior of the gels into metastable, tetragonal zirconia or into stable, monoclinic hafnia can be explained through the difference in free-energy changes of the tetragonal-to-monoclinic phase transformation.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yashima, M., Takahashi, H., Ohtake, K., Hirose, T., Kakihana, M., Arashi, H., Ikuma, Y., Suzuki, Y., and Yoshimura, M., J. Phys. Chem. Solids 57, 289 (1996).Google Scholar
2.Yashima, M., Hirose, T., Kakihana, M., Suzuki, Y., and Yoshimura, M., J. Ceram. Soc. Jpn. Int. Edition 103, 613 (1995).Google Scholar
3.Subbarao, E. C., Maiti, H. S., and Srivastava, K. K., Phys. Status Solidi (a) 21, 9 (1974).Google Scholar
4.Lynch, C. T., in High Temperature Oxides, Vol. 5, Part II, Oxides of Rare Earths, Titanium, Zirconium, Hafnium, Niobium and Tantalum, edited by Alper, A. M. (Academic Press, New York, 1970), p. 193.Google Scholar
5.Wilder, D. R., Buckley, J. D., Stacy, D. W., and Johnstone, J. K., Colloques Internationaux C.N.R.S. 205, 335 (1971).Google Scholar
6.Yashima, M., Kakihana, M., and Yoshimura, M., Solid State Ionics 86–88, 1131 (1996).CrossRefGoogle Scholar
7.Bernstein, E., Blanchin, M. G., and Samdi, A., Ceram. Inter. 15, 37 (1989).Google Scholar
8.Yashima, M., Kakihana, M., Ishii, K., Ikuma, Y., and Yoshimura, M., J. Mater. Res. 11, 1410 (1996).Google Scholar
9.Fedorus, V. B., Matsera, V. E., Zaitseva, Z. A., and Kopylova, L. I., Sov. Powder Metall. Metal Ceram. 20, 111 (1981).Google Scholar
10.Leroy, E., Brosse, C. Robin, and Torre, J. P., in Ultrastructure Processing of Advanced Materials, edited by Mackenzie, J. D. and Ulrich, D. R. (John Wiley & Sons, Inc., New York, 1988), p. 219.Google Scholar
11.Lange, F. F., Marshall, D. B., and Porter, J. R., in Ultrastructure Processing of Advanced Ceramics, edited by Mackenzie, J. D. and Ulrich, D. R. (John Wiley & Sons, Inc., New York, 1988), p. 519.Google Scholar
12.Leung, D. K., Chan, C. J., Rühle, M., and Lange, F. F., J. Am. Ceram. Soc. 74, 2786 (1991).Google Scholar
13.Balmer, M. L., Lange, F. F., and Levi, C. G., J. Am. Ceram. Soc. 75, 946 (1992).CrossRefGoogle Scholar
14.Miller, K. T., Chan, C. J., Cain, M. G., and Lange, F. F., J. Mater. Res. 8, 169 (1993).Google Scholar
15.Samdi, A., Durand, B., Roubin, M., and Daoudi, A., J. Euro. Ceram. Soc. 12, 353 (1993).Google Scholar
16.Samdi, A., Baron, Th. Grollier, Durand, B., and Roubin, M., Ann. Chim. Fr. 13, 171 (1988).Google Scholar
17.Samdi, A., Baron, Th. Grollier, Durand, B., and Roubin, M., Ann. Chim. Fr. 13, 471 (1988).Google Scholar
18.Samdi, A., Baron, Th. Grollier, Durand, B., and Roubin, M., Ann. Chim. Fr. 13, 483 (1988).Google Scholar
19.Samdi, A., Baron, Th. Grollier, Durand, B., and Roubin, M., Ann. Chim. Fr. 13, 517 (1988).Google Scholar
20.Yashima, M., Ohtake, K., Kakihana, M., and Yoshimura, M., J. Am. Ceram. Soc. 77, 2773 (1994).Google Scholar
21.Yashima, M., Ohtake, K., Kakihana, M., and Yoshimura, M., J. Mater. Sci. Lett. 13, 1564 (1994).Google Scholar
22.Nakamoto, K., in Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed. (John Wiley, New York, 1978).Google Scholar
23.Kakihana, M., Nagumo, T., Okamoto, M., and Kakihana, H., J. Phys. Chem. 91, 6128 (1987).Google Scholar
24.Doeuff, S., Henry, M., Sanchez, C., and Livage, J., J. Non-Cryst. Solids 89, 206 (1987).Google Scholar
25.Hamaguchi, H. and Hirakawa, A., in Raman Spectroscopy (Gakkai-Shuppan Center, Tokyo, 1988).Google Scholar
26.Rinn, G. and Schmidt, H., in Ceramic Powder Science II, edited by Messing, G. L., Fuller, E. R. Jr, and Hausner, H. (American Ceramic Society, Inc., Westerville, OH, 1988), p. 23.Google Scholar
27.Suzuki, H., Saito, H., and Hayashi, H., in Better Ceramics Through Chemistry V, edited by Hampden-Smith, M. J., Klemperer, W. G., and Brinker, C. J. (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA, 1992), p. 83.Google Scholar
28.Nyquist, R. A. and Kagel, R. O., in Infrared Spectra of Inorganic Compounds (Academic Press, London, 1971).Google Scholar
29.Kaufman, L., in User Applications of Alloy Phase Diagrams, edited by Kaufman, L. (ASM INTERNATIONAL, Metals Park, OH, 1987), p. 145.Google Scholar