Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-02T19:09:18.915Z Has data issue: false hasContentIssue false

Cu microcrystals in sol-gel derived glasses

Published online by Cambridge University Press:  03 March 2011

Masayuki Nogami
Affiliation:
Nagoya Institute of Technology, Showa Nagoya, 466 Japan
Yoshihiro Abe
Affiliation:
Nagoya Institute of Technology, Showa Nagoya, 466 Japan
Arao Nakamura
Affiliation:
Nagoya University, Chikusa Nagoya, 464 Japan
Get access

Abstract

Cu2+-containing SiO2 and Al2O5 · 9SiO2 glasses were prepared by the sol-gel method and heated under reducing conditions to precipitate small-sized Cu and Cu2O erystals. Cu2+ ions incorporated in SiO2 glass were reduced by heating in N2 to precipitate Cu2O and in H2 to precipitate Cu microcrystals with diameters of about 5 to 15 nm. Microcrystalline Cu-precipitated glass showed an optical absorption band at 560 nm and its third-order nonlinear susceptibility was 1.25 × 10−10 esu, which originated from the enhancement by the surface plasmon resonance of Cu particles. In contrast, Cu2+ ions incorporated in Al2O3 · 9SiO2 glass remained unchanged after heating in the reducing gas atmospheres.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Flytzanis, C., Hache, F., Klein, M. C., Ricard, D., and Rossingnol, P., Prog. Opt. 29, 321 (1991).CrossRefGoogle Scholar
2Ekimov, A. I., Efros, Al. L., and Onushchenko, A. A., Microcrystals, Solid State Commun. 56, 921 (1985).CrossRefGoogle Scholar
3Borrelli, N. F., Hall, D. W., Holland, H. J., and Smith, D. W., J. Appl. Phys. 61, 5399 (1987).CrossRefGoogle Scholar
4Fuyu, Y. and Parker, J. M., Mater. Lett. 6, 233 (1988).CrossRefGoogle Scholar
5Nagao, H., Misonou, M., and Kawahara, H., J. Non-Cryst. Solids 120, 199 (1990).CrossRefGoogle Scholar
6Akai, T., Kadono, K., Yamanaka, H., Sakaguchi, T., Miya, M., and Wakabayashi, H., J. Ceram. Soc. Jpn. 101, 105 (1993).CrossRefGoogle Scholar
7Hosono, H., Fukushima, H., Abe, Y., Weeks, R. A., and Zuhr, R. A., J. Non-Cryst. Solids 143, 157 (1992).CrossRefGoogle Scholar
8Kundo, D., Honma, I., Osawa, T., and Komiyama, H., J. Am. Ceram. Soc. 77, 1110 (1994).CrossRefGoogle Scholar
9Mennig, M., Schmitt, M., Kutsch, B., and Schmidt, H., SPIE 2288, Sol-gel Optics 3, 120 (1994).Google Scholar
10Nogami, M., in Sol-Gel Optics: Processing and Applications, edited by Klein, L.C. (Kluwer Acad. Pub., Boston, MA, 1994), p. 329.CrossRefGoogle Scholar
11Nogami, M. and Abe, Y., Appl. Phys. Lett. 65, 2545 (1994).CrossRefGoogle Scholar
12Singh, S. P. and Kumar, A., Phys. Chem. Glasses 34, 45 (1993).Google Scholar
13Cable, M. and Xiang, Z., Glastech. Ber. 62, 382 (1989).Google Scholar
14Baucke, F. G. K. and Duffy, J. A., Phys. Chem. Glasses 32, 211 (1991).Google Scholar
15Mie, G., Ann. Phys. 25, 377 (1908).CrossRefGoogle Scholar
16Roberts, S., Phys. Rev. 118, 1509 (1960).CrossRefGoogle Scholar
17Uchida, K., Kaneko, S., Omi, S., Hata, C., Tanji, H., Asahara, Y., Ikusima, A. J., Tokizaki, T., and Nakamura, A., J. Opt. Soc. Am. B 11, 1236 (1994).CrossRefGoogle Scholar
18Tokizaki, T., Nakamura, A., Kaneko, S., Uchida, K., Omi, S., Tanji, H., and Asahara, Y., Appl. Phys. Lett. 65, 941 (1994).CrossRefGoogle Scholar