Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T11:48:13.205Z Has data issue: false hasContentIssue false

Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors

Published online by Cambridge University Press:  31 January 2011

Vincent Meunier
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6367
Gleb Yushin
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
Yury Gogotsi*
Affiliation:
Department of Materials Science and Engineering, A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, Pennsylvania 19104
*
b)e-mail: gogotsi@drexel.edu. This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy
Get access

Abstract

Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior of nanoporous carbon materials. This finding is in good agreement with the trend of recent experimental data. Our analysis suggests that electrical energy storage can be improved by exploiting the highly curved surfaces of carbon nanotube arrays with diameters on the order of 1 nm.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Conway, B.E.Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer Academic/Plenum, New York 1999)CrossRefGoogle Scholar
2.US Department of Energy Basic research needs for electrical energy storage: Report of the basic energy sciences workshop on electrical energy storage (http://www.sc.doe.gov/bes/reports/files/EES_rpt.pdf)2007Google Scholar
3.The special issue on electrochemical capacitors. Electrochem. Soc. Interf. 17, 31 (2008)Google Scholar
4.Miller, J.R., Simon, P.Materials science—Electrochemical capacitors for energy management. Science 321, 651 (2008)CrossRefGoogle Scholar
5.Burke, A.Ultracapacitors: Why, how, and where is the technology. J. Power Sources 91, 37 (2000)CrossRefGoogle Scholar
6.Kötz, R., Carlen, M.Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483 (2000)CrossRefGoogle Scholar
7.Simon, P., Gogotsi, Y.Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008)CrossRefGoogle ScholarPubMed
8.Pandolfo, A.G., Hollenkamp, A.F.Carbon properties and their role in supercapacitors. J. Power Sources 157, 11 (2006)CrossRefGoogle Scholar
9.Frackowiak, E.Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9, 1774 (2007)CrossRefGoogle ScholarPubMed
10.Tipler, P.A.Physics (Worth, New York 1976)768771Google Scholar
11.Shi, H.Activated carbons and double layer capacitance. Electrochim. Acta 41, 1633 (1996)CrossRefGoogle Scholar
12.Vix-Guterl, C., Frackowiak, E., Jurewicz, K., Friebe, M., Parmentier, J., Béguin, F.Electrochemical energy storage in ordered porous carbon materials. Carbon 43, 1293 (2005)CrossRefGoogle Scholar
13.Sevilla, M., Alvarez, S., Centeno, T.A., Fuertes, A.B., Stoeckli, F.Performance of templated mesoporous carbons in supercapacitors. Electrochim. Acta 52, 3207 (2007)CrossRefGoogle Scholar
14.Chmiola, J., Yushin, G., Gogotsi, Y., Portet, C., Simon, P., Taberna, P.L.Anomalous increase in carbon capacitance at pore size less than 1 nanometer. Science 313, 1760 (2006)CrossRefGoogle ScholarPubMed
15.Huang, J., Sumpter, B.G., Meunier, V.Theoretical model for nanoporous carbon supercapacitors. Angew. Chem. Int. Ed. 47, 520 (2008)CrossRefGoogle ScholarPubMed
16.Gerischer, H.The impact of semiconductors on the concepts of electrochemistry. Electrochim. Acta 35, 1677 (1990)CrossRefGoogle Scholar
17.Wang, D.W., Li, F., Liu, M., Lu, G.Q., Cheng, H.M.3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. Int. Ed. 47, 373 (2008)CrossRefGoogle ScholarPubMed
18.Stoller, M.D., Park, S.J., Zhu, Y.W., An, J.H., Ruoff, R.S.Graphene-based ultracapacitors. Nano Lett. 8, 3498 (2008)CrossRefGoogle ScholarPubMed
19.Huang, J., Sumpter, B.G., Meunier, V.A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chem. Eur. J. 14, 6614 (2008)CrossRefGoogle ScholarPubMed
20.Portet, C., Yushin, G., Gogotsi, Y.Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45, 2511 (2007)CrossRefGoogle Scholar
21.Bushueva, E.G., Galkin, P.S., Okotrub, A.V., Bulusheva, L.G., Gavrilov, N.N., Kuznetsov, V.L., Moiseekov, S.I.Double layer supercapacitor properties of onion-like carbon materials. Phys. Status Solidi B 245, 2296 (2008)CrossRefGoogle Scholar
22.Lian, K., Park, S., Gogotsi, Y.Pseudocapacitive behavior of carbon nanoparticles modified by phosphomolybdic acid. J. Electrochem. Soc. 156, A921 (2009)Google Scholar
23.Honda, Y., Haramoto, T., Takeshige, M., Shiozaki, H., Kitamura, T., Yoshikawa, K., Ishikawa, M.Performance of electric double-layer capacitor with vertically aligned MWCNT sheet electrodes prepared by transfer methodology. J. Electrochem. Soc. 155, A930 (2008)CrossRefGoogle Scholar
24.Honda, Y., Takeshige, M., Shiozaki, H., Kitamura, T., Yoshikawa, K., Chakrabarti, S., Suekane, O., Pan, L.J., Nakayama, Y., Yamagata, M., Ishikawa, M.Vertically aligned double-walled carbon nanotube electrode prepared by transfer methodology for electric double layer capacitor. J. Power Sources 185, 1580 (2008)CrossRefGoogle Scholar
25.Kuznetsov, V.L., Butenko, Y.V., Chuvilin, A.L., Romanenko, A.I., Okotrub, A.V.Electrical resistivity of graphitized ultra-disperse diamond and onion-like carbon. Chem. Phys. Lett. 336, 397 (2001)CrossRefGoogle Scholar
26.Osswald, S., Yushin, G., Mochalin, V., Kucheyev, S.O., Gogotsi, Y.Control of sp 2/sp 3 carbon ratio and surface chemistry of nanodiamond powders by selectrive oxidation in air. J. Am. Chem. Soc. 128, 11635 (2006)CrossRefGoogle ScholarPubMed
27.Iwasaki, T., Maki, T., Yokoyama, D., Kumagai, H., Hashimoto, Y., Asari, T., Kawarada, H.Highly selective growth of vertically aligned double-walled carbon nanotubes by a controlled heating method and their electric double-layer capacitor properties. Phys. Status Solidi RPL 2, 53 (2008)CrossRefGoogle Scholar
28.Honda, Y., Ono, T., Takeshige, M., Morihara, N., Shiozaki, H., Kitamura, T., Yoshikawa, K., Morita, M., Yamagata, M., Ishikawa, M.Effect of MWCNT bundle structure on electric double-layer capacitor performance. Electrochem. Solid-State Lett. 12, A45 (2009)CrossRefGoogle Scholar
29.Zhang, H., Cao, G.P., Yang, Y.S.Electrochemical properties of ultra-long, aligned, carbon nanotube array electrode in organic electrolyte. J. Power Sources 172, 476 (2007)CrossRefGoogle Scholar
30.Portet, C., Chmiola, J., Gogotsi, Y., Park, S., Lian, K.Electrochemical characterizations of carbon nanomaterials by the cavity microelectrode technique. Electrochim. Acta 53, 7675 (2008)CrossRefGoogle Scholar
31.Hulicova-Jurcakova, D., Li, X., Zhu, Z.H., de Marco, R., Lu, G.Q.Graphitic carbon nanofibers synthesized by the chemical vapor deposition (CVD) method and their electrochemical performances in supercapacitors. Energy Fuels 22, 4139 (2008)CrossRefGoogle Scholar
32.Korenblit, Y., Rose, M., Kockrick, K., Borchardt, L., Kvit, A., Kaskel, S., Yushin, S.High-rate electrochemical capacitorsbased on ordered mesoporous silicon carbide-derived carbon. ACS Nano 4, 1337 (2010)CrossRefGoogle Scholar