Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T01:00:22.697Z Has data issue: false hasContentIssue false

CVD Si3N4 on single crystal SiC: Part II. High resolution electron microscopy and atomic models of the interface

Published online by Cambridge University Press:  31 January 2011

O. Unal*
Affiliation:
Center for Materials Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
T.E. Mitchell
Affiliation:
Center for Materials Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
*
a)Now at the Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106.
Get access

Abstract

Interface studies of CVD Si3N4 grown on (11$\overline 1$) SiC single crystal substrates have been made by transmission electron microscopy (TEM). It is found that there are two orientation relationships both of which involve the same (10$\overline 1$0)Si3N4//(11$\overline 1$)SiC planar relationship. However, the orientation relationships are not perfect and rotations of 2–6° are commonly seen between both directions and planes involved. High resolution electron microscopy (HREM) of the interfaces shows that the SiC and Si3N4 are continuous up to the interface and that no intermediate phases are formed. However, due to the small rotations, the HREM images are difficult to interpret directly in terms of atomic positions. Nevertheless, possible atomic models of the interface are proposed based upon the experimental findings. These models exploit the similarities between the [SiN4] and [SiC4] tetrahedra in Si3N4 and SiC, respectively. The observed orientation relationships appear to be due to matching of tetrahedra across the interface along with adequate lattice matches.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chu, S. N. G., Tsang, W. T., Chiu, T. H., and Macrander, A. T., J. Appl. Phys. 66, 520 (1989).CrossRefGoogle Scholar
2.Buljan, S. T., Baldani, J. G., and Huckabee, M. L., Am. Ceram. Soc. Bull. 66, 347 (1987).Google Scholar
3.McLean, A. F., Am. Ceram. Soc. Bull. 52, 464 (1973).Google Scholar
4.Ziegler, G., Heinrich, J., and Wotting, G., J. Mater. Sci. 22, 3041 (1987).CrossRefGoogle Scholar
5.Niihara, K. and Hirai, T., J. Mater. Sci. 12, 1233 (1977).CrossRefGoogle Scholar
6.Hirai, T. and Hayashi, S., J. Am. Ceram. Soc. 64, C88 (1981).CrossRefGoogle Scholar
7.Oda, K., Yoshio, T., and O-Oka, K., J. Am. Ceram. Soc. 66, C8 (1983).CrossRefGoogle Scholar
8.Shaw, T. M., Steeds, J. W., and Clarke, D. R., in Electron Microscopy of Materials, edited by Krakow, W. K., Smith, D. A., and Hobbs, L. W. (Mater. Res. Soc. Symp. Proc. 31, Pittsburgh, PA, 1984), p. 325.Google Scholar
9.Morosanu, C. E., Thin Solid Films 65, 171 (1980).CrossRefGoogle Scholar
10.Niihara, K. and Hirai, T., J. Mater. Sci. 11, 604 (1976).Google Scholar
11.Unal, O., Petrovic, J. J., and Mitchell, T. E., J. Mater. Res. 7, 136 (1992).Google Scholar
12.Cherns, D., Spence, J. C. H., Anstis, G. R., and Hutchison, J. L., Philos. Mag. A 46, 819 (1982).Google Scholar
13.Hiraga, K., Tsuno, K., Shinda, D., Hirabayashi, M., Hayashi, S., and Hirai, T., Philos. Mag. A 47, 483 (1983).Google Scholar
14. Virtual Laboratory, 37 Highland Court, Ukiah, CA 95482.Google Scholar
15.Veirman, A. De, Broddin, D., Van Landuyt, J., Skorupa, W., and Voelskow, M., in High Resolution Electron Microscopy of Defects in Materials, edited by Sinclair, R., Smith, D. J., and Dahmen, U. (Mater. Res. Soc. Symp. Proc. 183, Pittsburgh, PA, 1990), p. 147.Google Scholar
16.Belz, J., Te, E. H. Kaat, Zimmer, G., and Vogt, H., Nucl. Instrum. Methods in Phys. Res. B19/20, 279 (1987).CrossRefGoogle Scholar
17.Dahmen, U., Westmacott, K. H., and Thomas, G., in Surfaces and Interfaces in Ceramics and Ceramic/Metal Systems, edited by Pask, J. A. and Evans, A. G., Materials Science Research (Plenum Press, New York, 1980), Vol. 16, p. 391.Google Scholar
18.Ostyn, K. M., Ph.D. Thesis, Cornell Univ. (1983).Google Scholar
19.Wu, I. C., Chu, J. J., and Chen, L. J., J. Appl. Phys. 62, 879 (1987).CrossRefGoogle Scholar
20.Carter, C. B. and Schmalzried, H., Philos. Mag. A 52, 207 (1985).CrossRefGoogle Scholar
21.Kouh, Y. M. and Carter, C. B., Proc. EMSA Meeting, 216 (1985).Google Scholar
22.Simpson, Y. K. and Carter, C. B., Philos. Mag. A 53, L1 (1986).CrossRefGoogle Scholar
23.Zur, A. and McGill, T. C., J. Appl. Phys. 55, 378 (1984).CrossRefGoogle Scholar
24.Marchand, R., Laurent, Y., and Long, J., Acta Cryst. B 25, 2157 (1969).Google Scholar
25.Pearson, W. B., A Handbook of Lattice Spacings and Structures of Metals and Alloys, 2 (Pergamon Press, New York, 1967), p. 453.Google Scholar
26.Kohatsu, I. and McCauley, J. W., Mater. Res. Bull. IX, 917 (1974).CrossRefGoogle Scholar
27.Matthews, J. W., J. Vac. Sci. Technol. 12, 126 (1975).Google Scholar
28.Balluffi, R. W., Brokman, A., and King, A. H., Acta Metall. 30, 1453 (1982).CrossRefGoogle Scholar
29.Pirouz, P., private communication.Google Scholar
30.Taftø, J. and Spence, J. C. H., J. Appl. Cryst. 15, 60 (1982).CrossRefGoogle Scholar
31.Unal, O., Ph.D. Thesis, Case Western Reserve Univ., Cleveland, OH (1991).Google Scholar
32.Morozumi, S., Kikuchi, M., and Nishino, T., J. Mater. Sci. 16, 2137 (1981).CrossRefGoogle Scholar
33.Tremouilles, G. and Portier, R. J., J. de Physique C5, 299 (1988).Google Scholar
34.Ponce, F. A., Appl. Phys. Lett. 41, 371 (1982).Google Scholar
35.Newnham, R. C., in Structure-Property Relations (Springer-Verlag, New York, 1975), p. 62.CrossRefGoogle Scholar