Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T00:22:36.207Z Has data issue: false hasContentIssue false

Damage-resistant alumina-based layer composites

Published online by Cambridge University Press:  31 January 2011

Linan An
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania18015
Helen M. Chan
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania18015
Nitin P. Padture
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland20899
Brian R. Lawn
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland20899
Get access

Abstract

A new philosophy for tailoring layer composites for damage resistance is developed, specifically for alumina-based ceramics. The underlying key to the approach is microstructural control in the adjacent layers, alternating a traditional homogeneous fine-grain alumina (layer A) for hardness and wear resistance with a heterogeneous alumina : calcium-hexaluminate composite (layer C) for toughness and crack dispersion, with strong bonding between the interlayers. Two trilayer sequences, ACA and CAC, are investigated. Hertzian indentation tests are used to demonstrate the capacity of the trilayers to absorb damage. In the constituent materials, the indentation responses are fundamentally different: ideally brittle in material A, with classical cone cracking outside the contact; quasi-plastic in material C, with distributed microdamage beneath the contact. In the ACA laminates, shallow cone cracks form in the outer A layer, together with a partial microdamage zone in the inner C layer. A feature of the cone cracking is that it is substantially shallower than in the bulk A specimens and does not penetrate to the underlayer, even when the applied load is increased. This indicates that the subsurface microdamage absorbs significant energy from the applied loads, and thereby “shields” the surface cone crack. Comparative tests on CAC laminates show a constrained microdamage zone in the outer C layer, with no cone crack, again indicating some kind of shielding. Importantly, interlayer delamination plays no role in either layer configuration; the mechanism of damage control is by crack suppression rather than by deflection. Implications for the design of synergistic microstructures for damage-resistant laminates are considered.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kendall, K., Proc. R. Soc. London A 344, 287302 (1975).Google Scholar
2.Hutchinson, J. W., in Metal-Ceramic Interfaces, edited by Rühle, M., Evans, A. G., Ashby, M. F., and Hirth, J.P. (Acta-Scripta Metall. Proceedings Series, 1990), Vol. 4, pp. 295306.CrossRefGoogle Scholar
3.Hutchinson, J. W. and Suo, Z., Adv. Appl. Mech. 29, 64 (1991).Google Scholar
4.Clegg, W. J., Kendall, K., Alford, N. M., Button, T. W., and Birchall, J. D., Nature (London) 347, 455457 (1991).CrossRefGoogle Scholar
5.Russo, C. J., Harmer, M. P., Chan, H. M., and Miller, G. A., J. Am. Ceram. Soc. 75, 33963400 (1992).CrossRefGoogle Scholar
6.Harmer, M. P., Chan, H. M., and Miller, G. A., J. Am. Ceram. Soc. 75, 17151728 (1992).CrossRefGoogle Scholar
7.Marshall, D. B., Ratto, J.J., and Lange, F. F., J. Am. Ceram. Soc. 74, 29792987 (1991).CrossRefGoogle Scholar
8.Marshall, D. B., Am. Ceram. Soc. Bull. 71, 969973 (1992).Google Scholar
9.Morgan, P. E. D. and Marshall, D. B., J. Am. Ceram. Soc. (1995, in press).Google Scholar
10.Lawn, B. R., Fracture of Brittle Solids (Cambridge University Press, Cambridge, 1993).CrossRefGoogle Scholar
11.Roesler, F. C., Proc. Phys. Soc. London B 69, 981 (1956).CrossRefGoogle Scholar
12.Frank, F. C. and Lawn, B. R., Proc. R. Soc. London A 299, 291306 (1967).Google Scholar
13.Lawn, B. R., J. Appl. Phys. 39, 48284836 (1968).CrossRefGoogle Scholar
14.Swain, M. V. and Lawn, B. R., Phys. Status Solidi 35, 909923 (1969).CrossRefGoogle Scholar
15.Wilshaw, T. R., J. Phys. D: Appl. Phys. 4, 15671581 (1971).CrossRefGoogle Scholar
16.Lawn, B. R. and Wilshaw, T. R., J. Mater. Sci. 10, 10491081 (1975).CrossRefGoogle Scholar
17.Evans, A. G. and Wilshaw, T. R., Acta Metall. 24, 939956 (1976).CrossRefGoogle Scholar
18.Swain, M.V. and Hagan, J.T., J. Phys. D: Appl. Phys. 9, 22012214 (1976).CrossRefGoogle Scholar
19.Lawn, B. R. and Marshall, D. B., in Fracture Mechanics of Ceramics, edited by Bradt, R. C., Hasselman, D. P. H., and Lange, F. F. (Plenum, New York, 1978), Vol. 3, pp. 205229.Google Scholar
20.Warren, R., Acta Metall. 26, 17591769 (1978).CrossRefGoogle Scholar
21.Lawn, B. R. and Wiederhorn, S.M., in Contact Mechanics and Wear of Rail/Wheel Systems, edited by Kalousek, J., Dukkipati, R. V., and Gladwell, G. M. (University of Waterloo Press, Vancouver, 1983). pp. 133147.Google Scholar
22.Zeng, K., Breder, K., and Rowcliffe, D. J., Acta Metall. 40, 25952600 (1992).CrossRefGoogle Scholar
23.Zeng, K., Breder, K., and Rowcliffe, D. J., Acta Metall. 40, 26012605 (1992).CrossRefGoogle Scholar
24.Field, J. S. and Swain, M. V., J. Mater. Res. 8, 297306 (1993).CrossRefGoogle Scholar
25.Guiberteau, F., Padture, N. P., Cai, H., and Lawn, B. R., Philos. Mag. A 68, 10031016 (1993).CrossRefGoogle Scholar
26.Guiberteau, F., Padture, N. P., and Lawn, B. R., J. Ceram. Soc. 77, 18251831 (1994).CrossRefGoogle Scholar
27.Lawn, B. R., Padture, N. P., Cai, H, and Guiberteau, F., Science 263, 11141116 (1994).CrossRefGoogle Scholar
28.Cai, H., Stevens Kalceff, M. A., and Lawn, B. R., J. Mater. Res. 9, 762770 (1994).CrossRefGoogle Scholar
29.Cai, H, Kalceff, M.A.S., Hooks, B.M., Lawn, B.R., and Chyung, K., J. Mater. Res. 9, 26542661 (1994).CrossRefGoogle Scholar
30.Padture, N. P. and Lawn, B. R., J. Am. Ceram. Soc. 77, 25182522 (1994).CrossRefGoogle Scholar
31.Pajares, A., Guiberteau, F., Lawn, B. R., and Lathabai, S., J. Am. Ceram. Soc. 78, 10831086 (1995).CrossRefGoogle Scholar
32.Pajares, A., Wei, L., Lawn, B. R., and Marshall, D. B., J. Mater. Res. 10, 2613 (1995).CrossRefGoogle Scholar
33.Xu, H. H. K., Wei, L., Padture, N. P., Lawn, B. R., and Yeckley, R. L., J. Mater. Sci. 30, 869878 (1995).CrossRefGoogle Scholar
34.Padture, N. P. and Lawn, B. R., J. Am. Ceram. Soc. 78, 14311438 (1995).CrossRefGoogle Scholar
35.An, L., Soni, K. and Chan, H. M., J. Mater. Sci. (1995, in press).Google Scholar
36.An, L. and Chan, H.M., in Padture, N.P. and Lawn, B.R., Acta Metall. 43, 16091617.Google Scholar
37.Bae, S. I. and Baik, S., J. Am. Ceram. Soc. 76, 10651067 (1993).CrossRefGoogle Scholar
38.Mulhearn, T. O., J. Mech. Phys. Solids 7, 8596 (1959).CrossRefGoogle Scholar
39.Fischer-Cripps, A. C. and Lawn, B. R., Acta Metall. (in press).Google Scholar
40.Shaw, M. C., Marshall, D. B., Dadkhah, M. S., and Evans, A. G., Acta Metall. 41, 33113322 (1993).CrossRefGoogle Scholar
41.Sathyamoorthy, R., Virkar, A. V. and Cutler, R. A., J. Am. Ceram. Soc. 75, 11361141 (1992).CrossRefGoogle Scholar
42.Baskaran, S., Nunn, S. D., Popovic, D., and Halloran, J.W., J. Am. Ceram. Soc. 76, 22092216 (1993).CrossRefGoogle Scholar
43.Baskaran, S. and Halloran, J. W., J. Am. Ceram. Soc. 76, 22172224 (1993).CrossRefGoogle Scholar
44.Baskaran, S. and Halloran, J. W., J. Am. Ceram. Soc. 76, 12491255 (1994).CrossRefGoogle Scholar
45.Lawn, B. R., Wiederhorn, S. M., and Johnson, H., J. Am. Ceram. Soc. 58, 428432 (1975).CrossRefGoogle Scholar
46.Wiederhorn, S. M. and Lawn, B. R., J. Am. Ceram. Soc. 60, 451458 (1977).CrossRefGoogle Scholar
47.Marshall, D. B. and Lawn, B. R., J. Am. Ceram. Soc. 61, 2127 (1978).CrossRefGoogle Scholar
48.Xu, H. H. K. and Jahanmir, S., J. Am. Ceram. Soc. 78, 497500 (1995).CrossRefGoogle Scholar
49.Xu, H. H. K. and Jahanmir, S., J. Mater. Sci. (1995, in press).Google Scholar
50.Chyung, C. K., Beall, G. H., and Grossman, D. G., in Electron Microscopy and Structure of Materials, edited by Thomas, G., Fulrath, R. M., and Fisher, R. M. (University of California Press, Berkeley, CA, 1972), pp. 11671194.CrossRefGoogle Scholar
51.Padture, N. P., Evans, C. J., Xu, H. H. K., and Lawn, B. R., J. Am. Ceram. Soc. 78, 215217 (1995).CrossRefGoogle Scholar
52.Lawn, B. R., Padture, N. P., Guiberteau, F., and Cai, H., Acta Metall. 42, 16831693 (1994).CrossRefGoogle Scholar
53.Chyung, K., in Fracture Mechanics of Ceramics, edited by Bradt, R. C., Hasselman, D. P. H., and Lange, F. F. (Plenum Press, New York, 1974), Vol. 2, pp. 495508.CrossRefGoogle Scholar