Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-02T17:06:45.456Z Has data issue: false hasContentIssue false

Defect annealing in ion implanted silicon carbide

Published online by Cambridge University Press:  31 January 2011

L. Calcagno
Affiliation:
Dipartimento di Fisica, Universitá di Catania and Istituto Nazionale Fisica della Materia, C.so Italia 57, Catania, Italy
M. G. Grimaldi
Affiliation:
Dipartimento di Fisica, Universitá di Catania and Istituto Nazionale Fisica della Materia, C.so Italia 57, Catania, Italy
P. Musumeci
Affiliation:
Dipartimento di Fisica, Universitá di Catania and Istituto Nazionale Fisica della Materia, C.so Italia 57, Catania, Italy
Get access

Abstract

The recovery of lattice damage in ion implanted 6H-SiC single crystals by thermal annealing has been investigated in the temperature range 200–1000 °C by Rutherford backscattering spectrometry-channeling and by optical measurements in the UV-visible wavelength. The damage was produced by implantation at room temperature of 60 keV N+ at fluences between 1014 and 5 × 1015 ions/cm2. At low fluences a partially damaged layer with defects distributed over a depth comparable to the projected ion range was obtained. At higher fluences a continuous amorphous layer was formed. The defect annealing behavior depended on the initial damage morphology: an almost total defect recovery occurred in partially damaged layers with kinetics depending on the initial damage degree. If the defect concentration is smaller than 20 at.% the annealing rate is independent of temperature. Amorphous layers were stable in the investigated temperature range and no epitaxial regrowth occurred. After annealing, a strong change in the optical properties of the amorphous phase was observed indicating a recovery of the electronic properties of the material, suggesting the existence of several amorphous states and the relaxation of the amorphous that evolves toward thermodynamic states characterized by lower free energy values.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chelnokov, V. E., Mater. Sci. Eng. B11, 103 (1992).CrossRefGoogle Scholar
2.Kelner, G., Binari, S., Shua, M., Sleger, K., Palmour, J., and Kong, H., Mater. Sci. Eng. B11, 121 (1992).CrossRefGoogle Scholar
3.Harris, G. L., in Proprieties of Silicon Carbide, edited by Harris, G. L. (Short Run Press, Ltd., Exeter, U.K., 1995).Google Scholar
4.Rao, M. V., Griffiths, P., Holland, O. W., Kelner, G., Freitas, J. A., Simons, S. D., Chi, P. H., and Ghezzo, M., J. Appl. Phys. 77, 2479 (1995).CrossRefGoogle Scholar
5.Edmond, J. A., Kim, J., and Davis, R. F., in Rapid Thermal Processing, edited by Sedgwick, T. O., Seidel, T. E., and Tsaur, B-Y. (Mater. Res. Soc. Symp. Proc. 52, Pittsburgh, PA, 1986), p. 157.Google Scholar
6.Bohn, H. G., Williams, J. M., MacHargue, C. J., and Begun, G. M., J. Mater. Res. 2, 107 (1987).CrossRefGoogle Scholar
7.MacHargue, C. J. and Williams, J. M., Nucl. Instrum. Methods 80/81, 889 (1993).CrossRefGoogle Scholar
8.Derst, G., Wilbertz, C., LK. Bathia, L., Kratschner, W., and Kalbitzer, S., Appl. Phys. Lett 54, 1722 (1989).CrossRefGoogle Scholar
9.Yasuda, K., Takeda, M., Masuda, H., and Yoishida, A., Phys. Status Solidi 71, 549 (1982).CrossRefGoogle Scholar
10.Fohl, A., Emrick, R. M., and Carstanjer, H. D., Nucl. Instrum. Methods B 65, 335 (1992).CrossRefGoogle Scholar
11.Hart, R. R., Dunlop, H. L., and Marsh, O. J., Radiat. Eff. 9, 261 (1971).CrossRefGoogle Scholar
12.Musumeci, P., Calcagno, L., Grimaldi, M. G., and Foti, G., Nucl. Instrum. Methods B 116, 327 (1996).CrossRefGoogle Scholar
13.Mori, H. and Sakata, T., Nucl. Instrum. Methods B 94, 73 (1994).CrossRefGoogle Scholar
14.S.Wood, Spitznagel, Chayke, W. J., Doyle, N. J., Bradzov, J., and Fishnam, S. G., Nucl. Instrum. Methods B 16, 237 (1986).Google Scholar
15.Grimaldi, M. G., Calcagno, L., Musumeci, P., Frangis, N., and Van Landuyt, J., J. Appl. Phys. (in press).Google Scholar
16.Biersack, J. and Haggermarck, H., Nucl. Instrum. Methods B 174, 257 (1980).CrossRefGoogle Scholar
17.Pezoldt, J., Kalnin, A. A., Moskwina, D. R., and Savelyev, W. D., Nucl Instrum. Methods B 80, 943 (1993).CrossRefGoogle Scholar
18.Monemar, B. and Blum, J. M., J. Appl. Phys. 48, 1529 (1977).CrossRefGoogle Scholar
19.Zingle, S. J. and Snead, L. L., Nucl. Instrum. Methods B 116, 92 (1996).CrossRefGoogle Scholar
20.Sinke, W., Warabisako, T., Miyao, M., Tokuyama, T., Roorda, S., and Saris, F. W., J. Non-Cryst. Solids 99, 1516 (1989).Google Scholar
21.Reitano, R., Grimaldi, M. G., Baeri, P., Bellandi, E., Borghesi, S., and Baratta, G., J. Appl. Phys. 74, 2890 (1993).CrossRefGoogle Scholar
22.Battaglia, A., Priolo, F., Rimini, E., and Ferla, G., Appl. Phys. Lett. 56, 2622 (1990).CrossRefGoogle Scholar