Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T23:38:16.788Z Has data issue: false hasContentIssue false

Deformation behavior and energy absorption capability of polymer and ceramic-polymer composite microlattices under cyclic loading

Published online by Cambridge University Press:  31 January 2018

Almut Schroer
Affiliation:
Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Karlsruhe 76021, Germany
Jeffrey M. Wheeler
Affiliation:
Department of Materials, ETHZ – Swiss Federal Institute of Technology, Zurich 8093, Switzerland
Ruth Schwaiger*
Affiliation:
Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Karlsruhe 76021, Germany
*
a)Address all correspondence to this author. e-mail: ruth.schwaiger@kit.edu
Get access

Abstract

Specifically designed microlattices are able to combine outstanding mechanical and physical properties and, thus, expand the actual limits of the material property space. However, post-yield softening induced by plastic buckling or crushing of individual ligaments limits performance under cyclic loading, which affects their energy absorption capabilities. Understanding deformation under repeated loading is key to further optimizing these high-strength materials. While until now mainly hollow metallic microlattices and multistable or tailored buckling structures have been analyzed, this study investigates deformation and failure of polymer and ceramic-polymer microlattices under cyclic loading to understand the (i) influence of the microarchitecture and (ii) influence of processing conditions on the energy absorption capability. Despite fracture of individual struts, the stretching-dominated microarchitectures possess a superior behavior especially for larger cycle numbers. In combination with a specific annealing treatment of the polymer material, high recoverability and energy dissipation can be achieved.

Type
Invited Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Katia Bertoldi

References

REFERENCES

Bauer, J., Schroer, A., Schwaiger, R., and Kraft, O.: Approaching theoretical strength in glassy carbon nanolattices. Nat. Mater. 15, 438443 (2016).Google Scholar
Meza, L.R., Das, S., and Greer, J.R.: Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 13221326 (2014).Google Scholar
Meza, L.R., Zelhofer, A.J., Clarke, N., Mateos, A.J., Kochmann, D.M., and Greer, J.R.: Resilient 3D hierarchical architected metamaterials. Proc. Natl. Acad. Sci. U. S. A. 112, 1150211507 (2015).Google Scholar
Schaedler, T.A., Jacobsen, A.J., Torrents, A., Sorensen, A.E., Lian, J., Greer, J.R., Valdevit, L., and Carter, W.B.: Ultralight metallic microlattices. Science 334, 962965 (2011).Google Scholar
Bauer, J., Hengsbach, S., Tesari, I., Schwaiger, R., and Kraft, O.: High-strength cellular ceramic composites with 3D microarchitecture. Proc. Natl. Acad. Sci. U. S. A. 111, 24532458 (2014).Google Scholar
Bauer, J., Schroer, A., Schwaiger, R., and Kraft, O.: The impact of size and loading direction on the strength of architected lattice materials. Adv. Eng. Mater. 18, 15371543 (2016).Google Scholar
Zheng, X., Lee, H., Weisgraber, T.H., Shusteff, M., DeOtte, J., Duoss, E.B., Kuntz, J.D., Biener, M.M., Ge, Q., Jackson, J.A., Kucheyev, S.O., Fang, N.X., and Spadaccini, C.M.: Ultralight, ultrastiff mechanical metamaterials. Science 344, 13731377 (2014).CrossRefGoogle ScholarPubMed
Eckel, Z.C., Zhou, C., Martin, J.H., Jacobsen, A.J., Carter, W.B., and Schaedler, T.A.: Additive manufacturing of polymer-derived ceramics. Science 351, 5862 (2015).CrossRefGoogle Scholar
do Rosário, J.J., Berger, J.B., Lilleodden, E.T., McMeeking, R.M., and Schneider, G.A.: The stiffness and strength of metamaterials based on the inverse opal architecture. Extreme Mech. Lett. 12, 8696 (2017).Google Scholar
Deshpande, V.S., Ashby, M.F., and Fleck, N.A.: Foam topology: Bending versus stretching dominated architectures. Acta Mater. 49, 10351040 (2001).Google Scholar
Ashby, M.F.: The properties of foams and lattices. Philos. Trans. R. Soc., A 364, 1530 (2006).Google Scholar
Evans, A.G., He, M.Y., Deshpande, V.S., Hutchinson, J.W., Jacobsen, A.J., and Carter, W.B.: Concepts for enhanced energy absorption using hollow micro-lattices. Int. J. Impact Eng. 37, 947959 (2010).Google Scholar
Schaedler, T.A., Ro, C.J., Sorensen, A.E., Eckel, Z., Yang, S.S., Carter, W.B., and Jacobsen, A.J.: Designing metallic microlattices for energy absorber applications. Adv. Eng. Mater. 16, 276283 (2014).Google Scholar
Salari-Sharif, L., Schaedler, T.A., and Valdevit, L.: Energy dissipation mechanisms in hollow metallic microlattices. J. Mater. Res. 29, 17551770 (2014).Google Scholar
Torrents, A., Schaedler, T.A., Jacobsen, A.J., Carter, W.B., and Valdevit, L.: Characterization of nickel-based microlattice materials with structural hierarchy from the nanometer to the millimeter scale. Acta Mater. 60, 35113523 (2012).Google Scholar
Frenzel, T., Findeisen, C., Kadic, M., Gumbsch, P., and Wegener, M.: Tailored buckling microlattices as reusable light-weight shock absorbers. Adv. Mater. 28, 58655870 (2016).CrossRefGoogle ScholarPubMed
Haghpanah, B., Salari-Sharif, L., Pourrajab, P., Hopkins, J., and Valdevit, L.: Multistable shape-reconfigurable architected materials. Adv. Mater. 28, 79157920 (2016).Google Scholar
Shan, S., Kang, S.H., Raney, J.R., Wang, P., Fang, L., Candido, F., Lewis, J.A., and Bertoldi, K.: Multistable architected materials for trapping elastic strain energy. Adv. Mater. 27, 42964301 (2015).Google Scholar
Maloney, K.J., Roper, C.S., Jacobsen, A.J., Carter, W.B., Valdevit, L., and Schaedler, T.A.: Microlattices as architected thin films: Analysis of mechanical properties and high strain elastic recovery. APL Mater. 1, 022106 (2013).Google Scholar
Schroer, A., Bauer, J., Schwaiger, R., and Kraft, O.: Optimizing the mechanical properties of polymer resists for strong and light-weight micro-truss structures. Extreme Mech. Lett. 8, 283291 (2016).Google Scholar
Bauer, J., Meza, L.R., Schaedler, T.A., Schwaiger, R., Zheng, X., and Valdevit, L.: Nanolattices—An emerging class of mechanical metamaterials. Adv. Mater. 29, 1701850 (2017).Google Scholar
Lee, J-H., Wang, L., Kooi, S., Boyce, M.C., and Thomas, E.L.: Enhanced energy dissipation in periodic epoxy nanoframes. Nano Lett. 10, 25922597 (2010).Google Scholar
Lee, J-H., Wang, L., Boyce, M.C., and Thomas, E.L.: Periodic bicontinuous composites for high specific energy absorption. Nano Lett. 12, 43924396 (2012).Google Scholar
Mieszala, M., Hasegawa, M., Guillonneau, G., Bauer, J., Raghavan, R., Frantz, C., Kraft, O., Mischler, S., Michler, J., and Philippe, L.: Micromechanics of amorphous metal/polymer hybrid structures with 3D cellular architectures: Size effects, buckling behavior, and energy absorption capability. Small 13, 1602514 (2017).Google Scholar
Hammetter, C.I., Rinaldi, R.G., and Zok, F.W.: Pyramidal lattice structures for high strength and energy absorption. J. Appl. Mech. 80, 041015 (2013).Google Scholar
Bauer, J., Schroer, A., Schwaiger, R., Tesari, I., Lange, C., Valdevit, L., and Kraft, O.: Push-to-pull tensile testing of ultra-strong nanoscale ceramic-polymer composites made by additive manufacturing. Extreme Mech. Lett. 3, 105112 (2015).CrossRefGoogle Scholar
Wheeler, J.M. and Michler, J.: Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. Rev. Sci. Instrum. 84, 045103 (2013).Google Scholar
Groner, M.D., Fabreguette, F.H., Elam, J.W., and George, S.M.: Low-temperature Al2O3 atomic layer deposition. Chem. Mater. 16, 639645 (2004).Google Scholar
Ashby, M.F.: Materials Selection in Mechanical Design, 3rd ed. (Elsevier, Butterworth-Heinemann, Oxford, Burlington, 2005); pp. 6163.Google Scholar
Meza, L.R., Phlipot, G.P., Portela, C.M., Maggi, A., Montemayor, L.C., Comella, A., Kochmann, D.M., and Greer, J.R.: Reexamining the mechanical property space of three-dimensional lattice architectures. Acta Mater. 140, 424432 (2017).CrossRefGoogle Scholar
Krödel, S., Li, L., Constantinescu, A., and Daraio, C.: Stress relaxation in polymeric microlattice materials. Mater. Des. 130, 433441 (2017).CrossRefGoogle Scholar
Liontas, R. and Greer, J.R.: 3D nano-architected metallic glass: Size effect suppresses catastrophic failure. Acta Mater. 133, 393407 (2017).Google Scholar
Rys, J., Valdevit, L., Schaedler, T.A., Jacobsen, A.J., Carter, W.B., and Greer, J.R.: Fabrication and deformation of metallic glass micro-lattices. Adv. Eng. Mater. 16, 889896 (2014).Google Scholar
Supplementary material: PDF

Schroer et al. supplementary material

Schroer et al. supplementary material 1

Download Schroer et al. supplementary material(PDF)
PDF 1.7 MB

Schroer et al. supplementary material

Schroer et al. supplementary material 2

Download Schroer et al. supplementary material(Video)
Video 26.3 MB

Schroer et al. supplementary material

Schroer et al. supplementary material 3

Download Schroer et al. supplementary material(Video)
Video 8.2 MB

Schroer et al. supplementary material

Schroer et al. supplementary material 4

Download Schroer et al. supplementary material(Video)
Video 6.9 MB

Schroer et al. supplementary material

Schroer et al. supplementary material 5

Download Schroer et al. supplementary material(Video)
Video 101.4 MB

Schroer et al. supplementary material

Schroer et al. supplementary material 6

Download Schroer et al. supplementary material(Video)
Video 73.2 MB