Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T23:43:32.107Z Has data issue: false hasContentIssue false

Deformation mechanisms of a ZrTiAlV alloy with two ductile phases

Published online by Cambridge University Press:  18 September 2013

Shunxing Liang*
Affiliation:
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; and College of Equipment Manufacture, Hebei University of Engineering, Handan 056038, Hebei, China
Lixia Yin
Affiliation:
College of Equipment Manufacture, Hebei University of Engineering, Handan 056038, Hebei, China
Ran Jing
Affiliation:
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
Xinyu Zhang
Affiliation:
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
Mingzhen Ma*
Affiliation:
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
Riping Liu*
Affiliation:
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
*
a)Address all correspondence to these authors. e-mail: mz550509@ysu.edu.cn
Get access

Abstract

Deformation mechanisms of a ZrTiAlV alloy with two ductile phases including a hexagonal close-packed (hcp) structure phase were investigated. A ZrTiAlV alloy was prepared via smelting, breakdown, forging, and suitable heat treatments. X-ray diffraction results show that the proposed ZrTiAlV alloy has two ductile phase structures, namely, hcp structure α-phase and bcc (body-centered cubic) structure β-phase. Scanning electron microscopy (SEM) results show that the plastic deformation of the examined ZrTiAlV alloy starts from the α-phase. Transmission electron microscopy (TEM) analysis shows that only dislocation slips can be found near fractured areas, and the main slip plane in the α-phase is the (0001) lattice plane. Both of the SEM and TEM results show the inexistence of deformation twin in the examined ZrTiAlV alloy including a hcp structure α-phase. Reasons for the abnormal deformation behavior of the hcp structure α-phase are also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhilyaev, A.P., Sabirov, I., González-Doncel, G., Molina-Aldareguía, J., Srinivasarao, B., and Pérez-Prado, M.T.: Effect of Nb additions on the microstructure, thermal stability and mechanical behavior of high pressure Zr phases under ambient conditions. Mater. Sci. Eng., A 528, 3496 (2011).CrossRefGoogle Scholar
Hsu, H.C., Wu, S.C., Hsu, S.K., Sung, Y.C., and Ho, W.F.: Effects of heat treatments on the structure and mechanical properties of Zr–30Ti alloys. Mater. Charact. 62, 157 (2011).CrossRefGoogle Scholar
Suyalatu, , Nomura, N., Oya, K., Tanaka, Y., Kondo, R., Doi, H., Tsutsumi, Y., and Hanawa, T.: Microstructure and magnetic susceptibility of as-cast Zr–Mo alloys. Acta Biomater. 6, 1033 (2010).CrossRefGoogle ScholarPubMed
Han, Y., Zhang, L., Lu, J., and Zhang, W.T.: Thermal stability and corrosion resistance of nanocrystallized zirconium formed by surface mechanical attrition treatment. J. Mater. Res. 24, 3136 (2009).CrossRefGoogle Scholar
Li, Y.H., Zhang, W., Dong, C., Qiang, J.B., Makino, A., Fukuhara, M., and Inoue, A.: Glass-forming ability and mechanical properties of Zr75−xNi25Alx bulk glassy alloys. J. Mater. Res. 26, 533 (2011).CrossRefGoogle Scholar
Wang, X.D., Yang, L., Jiang, J.Z., Saksl, K., Franz, H., Fecht, H-J., Liu, Y.G., and Xian, H.S.: Enhancement of plasticity in Zr-based bulk metallic glasses. J. Mater. Res. 22, 2454 (2007).CrossRefGoogle Scholar
Liang, S.X., Ma, M.Z., Jing, R., Zhang, X.Y., and Liu, R.P.: Microstructure and mechanical properties of hot-rolled ZrTiAlV alloys. Mater. Sci. Eng., A 532, 1 (2012).CrossRefGoogle Scholar
Liang, S.X., Ma, M.Z., Jing, R., Zhou, Y.K., Jing, Q., and Liu, R.P.: Preparation of the ZrTiAlV alloy with ultra-high strength and good ductility. Mater. Sci. Eng., A 539, 42 (2012).CrossRefGoogle Scholar
Liang, S.X., Ma, M.Z., Jing, R., and Liu, R.P.: Structural evolution and mechanical properties of heat treated Zr-45Ti-5Al-3V alloy. Mater. Sci. Eng., A 541, 67 (2012).CrossRefGoogle Scholar
Zhu, Y.T., Liao, X.Z., and Wu, X.L.: Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57, 1 (2012).CrossRefGoogle Scholar
Liao, X.Z., Zhao, Y.H., Srinivasan, S.G., Zhu, Y.T., Valiev, R.Z., and Gunderou, D.V.: Deformation twining in nanocrystalline copper at room temperature and low strain rate. Appl. Phys. Lett. 84, 592 (2004).CrossRefGoogle Scholar
Hansen, N. and Ralph, B.: The strain and grain size dependence of the flow stress of copper. Acta Metall. 30, 411 (1982).CrossRefGoogle Scholar
Johari, O. and Thomas, G.: Substructures in explosively deformed Cu and Cu-Al alloys. Acta Metall. 12, 1153 (1964).CrossRefGoogle Scholar
Liao, X.Z., Zhao, Y.H., Zhu, Y.T., Valiev, R.Z., and Gunderov, D.V.: Grain-size effect on the deformation mechanisms of nanostructured copper processed by high-pressure torsion. J. Appl. Phys. 96, 636 (2004).CrossRefGoogle Scholar
Wu, X.L., Liao, X.Z., Srinivasan, S.G., Zhou, F., Lavernia, E.J., Valiev, R.Z., and Zhu, Y.T.: New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals. Phys. Rev. Lett. 100, 095701 (2008).CrossRefGoogle ScholarPubMed
Kaibyshev, R., Musin, F., Avtokratova, E., and Motohashi, Y.: Deformation behavior of a modified 5083 aluminum alloy. Mater. Sci. Eng., A. 392, 373 (2005).CrossRefGoogle Scholar
Ivanisenko, Y., Kurmanaeva, L., Weissmueller, J., Yang, K., Markmann, J., Rösner, H., Scherer, T., and Fecht, H.J.: Deformation mechanisms in nanocrystalline palladium at large strains. Acta Mater. 57, 3391 (2009).CrossRefGoogle Scholar
Nemat-Nasser, S., Guo, W.G., and Cheng, J.Y.: Mechanical properties and deformation mechanisms of a commercially pure titanium. Acta Mater. 47, 3705 (1999).CrossRefGoogle Scholar
Stanford, N., Sotoudeh, K., and Bate, P.S.: Deformation mechanisms and plastic anisotropy in magnesium alloy AZ31. Acta Mater. 59, 4866 (2011).CrossRefGoogle Scholar
Dargusch, M.S., Bermingham, M.J., McDonald, S.D., and StJohn, D.H.: Effects of boron on microstructure in cast zirconium alloys. J. Mater. Res. 25, 1695 (2010).CrossRefGoogle Scholar
Oh, Y.M., Jeong, Y.H., Lee, K.J., and Kim, S.J.: Effect of various alloying elements on the martensitic transformation in Zr–0.8 Sn alloy. J. Alloys Compd. 307, 3 (2000).CrossRefGoogle Scholar
Cai, S., Daymond, M.R., and Holt, R.A.: Modeling the room temperature deformation of a two-phase zirconium alloy. Acta Mater. 57, 407 (2009).CrossRefGoogle Scholar
Manero, J.M., Gil, F.J., and Planell, J.A.: Deformation mechanisms of Ti–6Al–4V alloy with a martensitic microstructure subjected to oligocyclic fatigue. Acta Mater. 48, 3353 (2000).CrossRefGoogle Scholar
Wang, Y.B., Louie, M., Cao, Y., Liao, X.Z., Li, H.J., Ringer, S.P., and Zhu, Y.T.: High-pressure torsion induced microstructural evolution in a hexagonal close-packed Zr alloy. Scr. Mater. 62, 214 (2010).CrossRefGoogle Scholar
Gurao, N.P., Kapoor, R., and Suwas, S.: Deformation behaviour of commercially pure titanium at extreme strain rates. Acta Mater. 59, 3431 (2011).CrossRefGoogle Scholar
Mccabe, R.J., Proust, G., Cerreta, E.K., and Misra, A.: Quantitative analysis of deformation twinning in zirconium. Int. J. Plast. 25, 454 (2009).CrossRefGoogle Scholar
Brenner, R., Béchade, J.L., Castelnau, O., and Bacroix, B.: Thermal creep of Zr–Nb1%–O alloys: Experimental analysis and micromechanical modelling. J. Nucl. Mater. 305, 175 (2002).CrossRefGoogle Scholar
Leyens, C. and Peters, M.: Titanium and Titanium Alloys-Fundamentals and Applications, 1st ed. (betz-druck GmbH, Darmstadt, 2003).CrossRefGoogle Scholar
Liu, J.Z.: Nuclear Structural Materials, 1st ed. (Chemical Industry Press, Beijing, 2007).Google Scholar