Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T03:46:48.907Z Has data issue: false hasContentIssue false

Deformation of catalytically grown carbon nanotubes induced by annealing under high pressure

Published online by Cambridge University Press:  31 January 2011

Ming Zhang
Affiliation:
Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
C. L. Xu
Affiliation:
Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
L. M. Cao
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
D. H. Wu
Affiliation:
Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
W. K. Wang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Get access

Extract

A study of the structural transformation of catalytically grown carbon nanotubes induced by annealing under high pressure is presented in this paper, in which the atomic details of the microstructural transformations have been monitored mainly with electron microscopy. The microstructural change from the multiwalled carbon nanotubes into a quasi-spherical onion becomes obvious just at 770 °C under 5.5 GPa. The nanotubes deform and almost transform into nanographite ribbons directly when the annealing temperature is above 950 °C under 5.5 GPa. It is suggested that the pressure and temperature play an important role in the structural transformations of multiwalled carbon nanotubes described here.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Rao, C.N., Seshadri, R., Govindaraj, A., and Sen, R., Mater. Sci. Eng. R15, 209 (1995).CrossRefGoogle Scholar
2.Smalley, R.E., Mater. Sci. Eng. B 19, 1 (1993).CrossRefGoogle Scholar
3.Ehernerich, H. and Spaepen, F., Solids State Physics-Advances and Applications (Academic Press, New York, 1994), Vol. 48.Google Scholar
4.Dresselhaus, M.S., Dresselhaus, G., and Eklund, P.C., Science of Fullerenes and Carbon Nanotubes (Academic Press, New York, 1996).Google Scholar
5.Ebbesen, T.W., Phys. Today 49, 26 (1996).CrossRefGoogle Scholar
6.Kratschmer, W., Lamb, L.D., Fostiropoulos, K., and Huffman, D.R., Nature 347, 354 (1990).CrossRefGoogle Scholar
7.Terrones, M., Grobert, N., Olivares, J., Zhang, J.P., Terrones, H., Kordato, K., Hsu, W.K., Hare, J.P., Towsend, P.D., Prassides, K., Cheetam, A.K., Kroto, H.W., and Walton, D.R.M, Nature 388, 52 (1997).CrossRefGoogle Scholar
8.Dai, H.J., Moy, E., Lu, Y. Z., Fan, S., and Lieber, C.M., Nature 375, 769 (1995).CrossRefGoogle Scholar
9.Krishnan, A., Dujardin, E., Treacy, M.M.J, Hugdahl, J., Lynum, S., and Ebbesen, T.W., Nature 388, 451 (1997).CrossRefGoogle Scholar
10.Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A., and Wang, G., Science 274, 1701 (1996).CrossRefGoogle Scholar
11.Niu, C., Sichel, E.K., Hoch, R., Moy, D., and Tennent, H., Appl. Phys. Lett. 70, 1480 (1997).CrossRefGoogle Scholar
12.Service, R.F., Science 281, 940 (1998).CrossRefGoogle Scholar
13.Ball, P., Nature 382, 207 (1996).CrossRefGoogle Scholar
14.White, C.T. and Todorov, T.N., Nature 393, 240 (1998).CrossRefGoogle Scholar
15.Tans, S.J., Verschueren, A.R.M, and Dekker, C., Nature 393, 49 (1998).CrossRefGoogle Scholar
16.McEuen, P.L., Nature 393, 15 (1998).CrossRefGoogle Scholar
17.Che, G., Lakshmi, B.B., Fisher, E.R., and Martin, C.R., Nature 393, 346 (1998).CrossRefGoogle Scholar
18.Treacy, M.M.J, Ebbesen, T.W., and Gibson, J.M., Nature 381, 678 (1996).CrossRefGoogle Scholar
19.Robertson, D.H., Brenner, D.W., and Mintmire, J.W., Phys. Rev. B 45, 12592 (1992).CrossRefGoogle Scholar
20.Charlier, J-C. and Michenaud, J-P., Phys. Rev. Lett. 70, 1858 (1993).CrossRefGoogle Scholar
21.Chopra, N.G., Benedict, L.X., Crespi, V.H., Cohen, M.L., Loie, S.G., and Zettl, A., Nature 377, 135 (1995).CrossRefGoogle Scholar
22.Rouff, R.S., Tersoff, J., Lorents, D.C., Subramoney, S., and Chan, B., Nature 364, 514 (1993).CrossRefGoogle Scholar
23.Wagner, H.D., Lourie, O.L., Feldman, Y., and Tenne, R., Appl. Phys. Lett. 72, 188 (1998).CrossRefGoogle Scholar
24.Iijima, S., Brabec, C., Maiti, A., and Brenholc, J., J. Chem. Phys. 104, 2089 (1996).CrossRefGoogle Scholar
25.Falvo, M.R., Clary, G., Taylor, R.M., Chi, C., Brooks, F.P. Jr., Washburn, S., and Superfine, R., Nature 389, 582 (1997).CrossRefGoogle Scholar
26.Zhou, O., Fleming, R.M., Murphy, D.W., Chen, C.H., Haddon, R.C., Bamirez, A.P., and Glarum, S.H., Science 263, 1744 (1994).CrossRefGoogle Scholar
27.Ajayan, P.M., Ebbesen, T.W., Ichihashi, T., Iijima, S., Tanigaki, K., and Hiura, H., Nature 362, 522 (1993).CrossRefGoogle Scholar
28.Heer, W.A. and Ugarte, D., Chem. Phys. Lett. 207, 480 (1993).CrossRefGoogle Scholar
29.Monthioux, M. and Lavin, J.G., Carbon 32, 335 (1994).CrossRefGoogle Scholar
30.Hamwi, A., Alvergnat, H., Bonnamy, S., and Beguin, F., Carbon 35, 723 (1997).CrossRefGoogle Scholar
31.Zhang, M., He, D.W., Zhang, X.Y., Xu, Y.F., and Wang, W.K., Ji, L., Wei, B.Q., and Wu, D.H., Nanostruct. Mater. 10, 291 (1998).CrossRefGoogle Scholar
32.Zhang, M., Wu, D.H., Xu, C.L., Xu, X.F., and Wang, W.K., Nanostruct. Mater. 10, 1145 (1998).CrossRefGoogle Scholar
33.Marques, L., Hodeau, J.L., Nunez-Regueiro, M., and Perroux, M., Phys. Rev. B 54, R12633 (1996).CrossRefGoogle Scholar
34.Iwasa, Y., Arima, T., Fleming, R.M., Siegrist, T., Zhou, O., Haddon, R.C., Rothberg, L.J., Lyons, K.B., Carter, H.L. Jr., Hebard, A.F., Tycko, R., Dabbagh, G., Krajewski, J.J., Thomas, G.A., and Yagi, T., Science 264, 1570 (1994).CrossRefGoogle Scholar
35.Ugarte, D., Nature 359, 707 (1992).CrossRefGoogle Scholar
36.Ugarte, D., Chem. Phys. Lett. 207, 473 (1993).CrossRefGoogle Scholar
37.Banhart, F. and Ajayan, P.M., Nature 382, 433 (1996).CrossRefGoogle Scholar
38.Wakabayashi, K., Fujita, M., Ajiki, H., and Sigrist, M., Phys. Rev. B 59, 8271 (1999).CrossRefGoogle Scholar
39.Chen, Y., Gerald, J. F., Chadderton, L.T., and Chaffron, L., Appl. Phys. Lett. 74, 2782 (1999).CrossRefGoogle Scholar
40.Crespi, V.H., Chopra, N.G., Cohen, M.L., Zettle, A., and Louie, S.G., Phys. Rev. B 54, 5927 (1996).CrossRefGoogle Scholar
41.Zhang, Q.L., O'Brien, S.C., Heath, J.R., Liu, Y., Curl, R.F., Kroto, H.W., and Smalley, R.E., J. Phys. Chem. 90, 525 (1986).CrossRefGoogle Scholar
42.Kroto, H.W. and McKay, K., Nature 331, 328 (1988).CrossRefGoogle Scholar
43.Rodriguez, N.M., J. Mater. Res. 8, 3233 (1993).CrossRefGoogle Scholar
44.Kroto, H.W., Nature 359, 670 (1992).CrossRefGoogle Scholar
45.Sundqvist, B., Adv. Phys. 48, 1 (1999).CrossRefGoogle Scholar
46.Chesnokov, S.A., Nalimova, V.A., Rinzler, A.G., and Smalley, R.E., Phys. Rev. Lett. 82, 343 (1999).CrossRefGoogle Scholar
47.Bandow, S., Jpn. J. Appl. Phys. 36, L1403 (1997).CrossRefGoogle Scholar
48.Wonnell, S.K., Delaye, J.M., Bibole, M., and Limoge, Y., J. Appl. Phys. 72, 5195 (1992).CrossRefGoogle Scholar