Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-02T19:01:16.525Z Has data issue: false hasContentIssue false

Deposition of epitaxial β–SiC films on porous Si(100) from MTS in a hot wall LPCVD reactor

Published online by Cambridge University Press:  03 March 2011

Chien C. Chiu
Affiliation:
Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0237
Seshu B. Desu*
Affiliation:
Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0237
Gang Chen
Affiliation:
Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0237
Ching Yi Tsai
Affiliation:
Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0237
William T. Reynolds Jr.
Affiliation:
Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0237
*
a)Author to whom all correspondence should be addressed.
Get access

Abstract

Epitaxial β-SiC thin films were grown on modified Si(100) substrates from methyltrichlorosilane (CH3SiCl3 or MTS) in a hot wall reactor by using low pressure chemical vapor deposition (LPCVD). At 1150 °C, the growth rate of the β-SiC films was 120 Å/min. Epitaxial β-SiC(100) thin films were deposited after the deposition time of 12.5 min. However, the crystallinity of the deposited films was influenced by the deposition time. For example, the occurrence of rotational β-SiC(100) crystals and polycrystalline β-SiC with a highly preferred orientation of (100) planes was obtained for the deposition time of 50 min. XRD and TEM showed the appearance of polycrystalline β-SiC films with a preferred orientation of β-SiC(111) after further increasing the deposition times (time ≥ 75 min). At 1100 °C, polycrystalline β-SiC films with poor surface morphology were observed even though the film had a preferred orientation of β-SiC(100) for short deposition time (e.g., 12.5 min). Polycrystalline β-SiC(111) film was obtained for the deposition time of 200 min at this temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Davis, R. F., Kelner, G., Shur, M., Palmour, J. W., and Edmond, J. A., Proc. IEEE 79, 667 (1991).Google Scholar
2Langlais, F., Hottier, F., and Cadoret, R., J. Cryst. Growth 56, 659 (1982).CrossRefGoogle Scholar
3Kern, W. and Schnable, G. L., IEEE Trans, on Electron Devices ED–26, 647 (1979).CrossRefGoogle Scholar
4Chiu, C. C., Desu, S. B., and Tsai, C. Y., J. Mater. Res. 8, 2617 (1993).CrossRefGoogle Scholar
5Nishino, S. and Saraie, J., in Amorphous and Crystalline Silicon Carbide, edited by Harris, G.L. and Yang, C. Y-W. (Springer-Verlag, Berlin, Heidelberg, 1989), p. 45.Google Scholar
6Sheldon, B. W., Besmann, T. M., More, K. L., and Moss, T. S., J. Mater. Res. 8, 1086 (1993).CrossRefGoogle Scholar
7Stoner, B. R., Ma, G-H.M., Wolter, S. D., and Glass, J. T., Phys.Rev. B 45, 11067 (1992).CrossRefGoogle Scholar
8Jiang, X., Klages, C-P., Rosier, M., Zachai, R., Harweg, M., and Fusser, H-J., Appl. Phys. A 57, 483 (1993).CrossRefGoogle Scholar
9Chiu, C. C. and Desu, S. B., J. Mater. Res. 8, 535 (1993).CrossRefGoogle Scholar
10Chiu, C. C., Kwok, C. K., and Desu, S.B., in Chemical Vapor Deposition of Refractory Metals and Ceramics II, edited by Besmann, T. M., Gallois, B. M., and Warren, J. W. (Mater. Res. Soc. Symp. Proc. 250, Pittsburgh, PA, 1992), p. 179.Google Scholar
11Schmmel, D. G., in Quick Reference Manual for Silicon Integrated Circuit Technology, edited by Beadle, W. E., Tsai, J. C. C., and Plummer, R. D. (John Wiley & Sons, Inc., New York, 1985), pp. 59.Google Scholar
12Newman, R. C. and Wakefield, J., in Solid State Physics in Electronics and Communication, edited by Desirant, M. and Michels, J. L. (Academic Press, London, New York, 1960), p. 319.Google Scholar
13Jacobson, K. A., J. Electrochem. Soc. 118, 1001 (1971).CrossRefGoogle Scholar
14Cheng, D. J., Shyy, W. J., Kuo, D. H., and Hon, M. H., J. Electrochem. Soc. 134, 3145 (1987).CrossRefGoogle Scholar
15So, M. G. and Chun, J. S., J. Vac. Sci. Technol. A 6, 5 (1988).CrossRefGoogle Scholar
16Carter, C. H. Jr., Davis, R. F., and Nutt, S. R., J. Mater. Res. 1, 811 (1986).CrossRefGoogle Scholar
17Kim, H. J., Davis, R. F., Cox, X. B., and Linton, R. W., J. Electrochem. Soc. 134, 2269 (1987).CrossRefGoogle Scholar
18Beécourt, N., Ponthenier, J. L., Papon, A. M., and Jaussaud, C., Physica B 185, 79 (1993).CrossRefGoogle Scholar
19Shigeta, M., Fujii, Y., Furukawa, K., Suzuki, A., and Nakajima, S., Appl. Phys. Lett. 55, 1522 (1989).CrossRefGoogle Scholar
20Yonekara, T., Smith, H. I., Thompson, C. V., and Palmer, J. E., Appl. Phys. Lett. 45, 631 (1984).CrossRefGoogle Scholar
21Liaw, P. and Davis, R. F., J. Electrochem. Soc. 132, 642 (1985).CrossRefGoogle Scholar
22Ikoma, K., Yamanaka, M., Yamaguchi, H., and Shichi, Y., J. Electrochem. Soc. 138, 3028 (1991).CrossRefGoogle Scholar
23Ivanov, P. A. and Checnokov, V. E., Semicond. Sci. Technol. 7, 863 (1992).CrossRefGoogle Scholar
24Molnar, B., J. Mater. Res. 7, 2465 (1992).CrossRefGoogle Scholar