Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T00:44:19.799Z Has data issue: false hasContentIssue false

Dielectric properties and structure of hydroxyapatite ceramics sintered by different conditions

Published online by Cambridge University Press:  03 March 2011

J.J. Prieto Valdes*
Affiliation:
Laboratorio de Ceramicas Especiales-IMRE, Facultad de Fisica, Universidad de La Habana, San Lazaro y L, Vedado, La Habana, Cuba
A. Victorero Rodriguez
Affiliation:
Laboratorio de Ceramicas Especiales-IMRE, Facultad de Fisica, Universidad de La Habana, San Lazaro y L, Vedado, La Habana, Cuba
J. Guevara Carrio
Affiliation:
Laboratorio de Ceramicas Especiales-IMRE, Facultad de Fisica, Universidad de La Habana, San Lazaro y L, Vedado, La Habana, Cuba
*
a)Present address: Depto. Ciencia de Materials, ESFM-IPN, U.P. “Adolfo Lopez Mateo”, Edif. No. 9, Mcxico D.F. C.P. 07738, Mexico.
Get access

Abstract

Several conditions for hydroxyapatite ceramic preparation were used: sintering at 1150 °C in air or under H2O vapor flow, quenched in water at room temperature after sintering, or slow cooling inside the furnace. Depending on specific combinations of these preparation conditions, in the resulting ceramics significant differences are observed in the phase composition and dielectric properties, ranging from capacitive to a semiconducting response. Comparison between the experimental x-ray diffraction patterns and those calculated by the Rietveld method show that during sintering in air, approximately 40% of hydroxyapatite is transformed to tricalcium phosphate. The XRD analysis shows that this transformation could be possible using the following process: Ca10(PO4)6(OH)2 = 2Ca3(PO4)2 + Ca2P2O7 + 2CaO + H2O.

Type
Rapid Communication
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1de Groot, K., Biomaterials, 1, 47 (1980).CrossRefGoogle Scholar
2Jarcho, M., Clin. Orthop. 157, 259 (1981).CrossRefGoogle Scholar
3Shors, E. C., White, E.W., and Kopchok, G., in Biomedical Materials and Devices, edited by Hanker, J. S. and Giammara, B. L. (Mater. Res. Soc. Symp. Proc. 110, Pittsburgh, PA, 1989), p. 211.Google Scholar
4Shimazaki, K. and Mooney, V., J. Orthop. Res. 3, 301 (1985).CrossRefGoogle Scholar
5Hollinger, J. D. and Ballestone, G. C., Clin. Orthop. 207, 290 (1980).Google Scholar
6Ono, M., Mukikobunshi-Haiburriddo Porima Oyo (CMC, Tokyo, 1985), p. 299.Google Scholar
7Zhuo, J., Zhang, X., Chen, J., Zeng, S., and de Groot, K., J. Mater. Sci: M. in Med. 4, 83 (1993).Google Scholar
8Roy, D.M. and Shors, E.C., Nature (London) 247, 220 (1974).CrossRefGoogle Scholar