Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T01:07:10.711Z Has data issue: false hasContentIssue false

Effect of crystalline phase on the nanoparticle growth in glass-ceramics

Published online by Cambridge University Press:  03 March 2011

T.K. Kundu
Affiliation:
Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India
D. Chakravorty
Affiliation:
Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India
Get access

Abstract

Nanometer-sized silver particles with diameters in the range 4.3 to 11.5 nm have been grown within a glass-ceramic containing BaTiO3 by just subjecting the former to an alkali/silver ion exchange reaction. A reduction treatment in hydrogen is, however, shown to be necessary for such growth in glass-ceramics having crystalline phases such as BaTiSiO5, Zn2SiO4, and Li4P2O7, respectively. The possible presence of Ti3+ ions in the BaTiO3 phase is believed to cause such a difference in the reduction behavior of these composites.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Andres, R. P., Averback, R. S., Brown, W. L., Brus, L. E., Goddard, W. A. III, Kaldor, A., Louie, S. G., Moscovits, M., Peercy, P. S., Riley, S. J., Siegel, R. W., Spaepen, F., and Wang, Y., J. Mater. Res. 4, 704 (1989).Google Scholar
2Doremus, R. H., J. Chem. Phys. 42, 414 (1965).Google Scholar
3Araujo, R. J., in Treatise on Materials Science and Technology, edited by Tomrozawa, M. and Doremus, R. H. (Academic Press, New York, 1977), p. 71.Google Scholar
4Armistead, W. H. and Stookey, S. D., U.S. Patent 3 108 860 (1965).Google Scholar
5Seward, T. P. III, J. Appl. Phys. 46, 689 (1975).CrossRefGoogle Scholar
6Stookey, S. D., Beall, G. H., and Pierson, J. E., J. Appl. Phys. 49, 5114 (1978).Google Scholar
7Rawson, H., Properties and Application of Glasses, Glass Science and Technology 3 (Elsevier, Amsterdam, 1980), p. 218.Google Scholar
8Kreibig, U., J. Phys. F : Met. Phys. 4, 999 (1974).Google Scholar
9Roy, B. and Chakravorty, D., J. Phys. Condens. Matter 2, 9323 (1990).Google Scholar
10Roy, B. and Chakravorty, D., J. Appl. Phys. 74 (6), 4190 (1993).Google Scholar
11Chakravorty, D. and Roy, D., J. Mater. Sci. Lett. 4, 1014 (1985).Google Scholar
12Chatterjee, A. and Chakravorty, D., J. Phys. D : Appl. Phys. 22, 1386 (1989).CrossRefGoogle Scholar
13Roy, S., Chatterjee, A., and Chakravorty, D., J. Mater. Res. 8, 689 (1993).Google Scholar
14Ziman, J. M., Electrons and Phonons (Clarendon, Oxford, 1960), p. 364.Google Scholar
15Herczog, A., J. Am. Ceram. Soc. 47, 107 (1964).Google Scholar
16Lines, M. E., Phys. Rev. B 15, 388 (1977).Google Scholar
17Takashige, M., Nagamma, T., Ozawa, H., Uno, R., Tsuyo, N., and Arai, K., Jpn. J. Appl. Phys. 19, L255 (1980).Google Scholar
18Takashige, M., Mitsui, T., Nakamura, T., Aikawa, Y., and Jang, M., Jpn. J. Appl. Phys. 20, L159 (1981).Google Scholar
19Newnham, R. E., Bowen, L. J., Klicker, K. A., and Cross, L. E., Mat. Eng. 2, 93 (1980).Google Scholar