Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-15T02:44:03.973Z Has data issue: false hasContentIssue false

Effect of melt temperature on the mechanical properties of bulk metallic glasses

Published online by Cambridge University Press:  31 January 2011

Golden Kumar*
Affiliation:
National Institute for Materials Science, NIMS, Tsukuba 305-0047, Japan
Kazuhiro Hono
Affiliation:
National Institute for Materials Science, NIMS, Tsukuba 305-0047, Japan
*
a) Address all correspondence to this author. e-mail: golden.kumar@yale.edu
Get access

Abstract

The effect of melt temperature on the structure and mechanical properties of three Zr-based bulk metallic glasses (BMGs)—Zr62Cu17Ni13Al8, Zr55Cu20Ni10Al10Ti5, and Zr52.5Cu17.9Ni14.6Al10Ti5 (Vit105)—has been studied. The results show that the BMGs cast from higher melt temperature exhibit large plastic strains despite their amorphous structure. The samples become macroscopically brittle when the quenched-in crystals form an interconnected microstructure. In contrast to previous studies, there is no notable effect on the Poisson’s ratio (ν) and other elastic constants.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Chen, H.S.: Thermal and mechanical stability of metallic glass ferromagnets. Scr. Metall. 11, 367 (1977).CrossRefGoogle Scholar
2Spaepen, F.: Microscopic mechanism for steady-state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).CrossRefGoogle Scholar
3Inoue, A.: High-strength bulk amorphous-alloys with low critical cooling rates. Mater. Trans., JIM 36, 866 (1995).CrossRefGoogle Scholar
4Greer, A.L.: Metallic glasses. Science 267, 1947 (1995).CrossRefGoogle ScholarPubMed
5Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).CrossRefGoogle Scholar
6Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
7Loffler, J.F.: Bulk metallic glasses. Intermetallics 11, 529 (2003).CrossRefGoogle Scholar
8Wang, W.H., Dong, C., and Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 (2004).Google Scholar
9Ashby, M.F. and Greer, A.L.: Metallic glasses as structural materials. Scr. Mater. 54, 321 (2006).CrossRefGoogle Scholar
10Schuh, C.A., Hufnagel, T.C., and Ramamurty, U.: Overview No. 144–Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).CrossRefGoogle Scholar
11Yavari, A.R., Lewandowski, J.J., and Eckert, J.: Mechanical properties of bulk metallic glasses. MRS Bull. 32, 635 (2007).CrossRefGoogle Scholar
12Inoue, A. and Nishiyama, N.: New bulk metallic glasses for applications as magnetic-sensing, chemical, and structural materials. MRS Bull. 32, 651 (2007).CrossRefGoogle Scholar
13Saotome, Y., Itoh, K., Zhang, T., and Inoue, A.: Superplastic nanoforming of Pd-based amorphous alloy. Scr. Mater. 44, 1541 (2001).CrossRefGoogle Scholar
14Schroers, J.: The superplastic forming of bulk metallic glasses. JOM 57, 35 (2005).CrossRefGoogle Scholar
15Kumar, G., Tang, H., and Schroers, J.: Nanomoulding with amorphous metals. Nature 457, 868 (2009).CrossRefGoogle ScholarPubMed
16Bei, H., Xie, S., and George, E.P.: Softening caused by profuse shear banding in a bulk metallic glass. Phys. Rev. Lett. 96, 105503 (2006).CrossRefGoogle Scholar
17Hufnagel, T.C., Fan, C., Ott, R.T., Li, J., and Brennan, S.: Controlling shear band behavior in metallic glasses through microstructural design. Intermetallics 10, 1163 (2002).CrossRefGoogle Scholar
18Xing, L.Q., Li, Y., Ramesh, K.T., Li, J., and Hufnagel, T.C.: Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys. Rev. B: Condens. Matter 64, 180201 (2001).CrossRefGoogle Scholar
19Mondal, K., Kumar, G., Ohkubo, T., Oishi, K., Mukai, T., and Hono, K.: Large apparent compressive strain of metallic glasses. Philos. Mag. Lett. 87, 625 (2007).CrossRefGoogle Scholar
20J.Das,Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., and Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005).Google Scholar
21Das, J., Pauly, S., Duhamel, C., Wei, B.C., and Eckert, J.: Microstructure and mechanical properties of slowly cooled Cu47.5Zr47.5Al5. J. Mater. Res. 22, 326 (2007).CrossRefGoogle Scholar
22Lee, J.C., Park, K.W., Kim, K.H., Fleury, E., Lee, B.J., Wakeda, M., and Shibutani, Y.: Origin of the plasticity in bulk amorphous alloys. J. Mater. Res. 22, 3087 (2007).CrossRefGoogle Scholar
23Lee, K.L., Li, Y., and Schuh, C.A.: Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass. Acta Mater. 52, 4121 (2004).CrossRefGoogle Scholar
24Kelly, A., Tyson, W.R., and Cottrell, A.H.: Ductile and brittle crystals. Philos. Mag. 15, 567 (1967).CrossRefGoogle Scholar
25Lewandowski, J.J., Wang, W.H., and Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).CrossRefGoogle Scholar
26Schroers, J. and Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).CrossRefGoogle ScholarPubMed
27Castellero, A., Uhlenhaut, D., Moser, B., and Loffler, J.: Critical Poisson ratio for room-temperature embrittlement of amorphous Mg85Cu5Y10. Philos. Mag. Lett. 87, 383 (2007).CrossRefGoogle Scholar
28Lee, J.Y., Han, K.H., Park, J.M., Chattopadhyay, K., Kim, W.T., and Kim, D.H.: Deformation and evolution of shear bands under compressive loading in bulk metallic glasses. Acta Mater. 54, 5271 (2006).CrossRefGoogle Scholar
29Chen, M.W.: Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility. Annu. Rev. Mater. Res. 38, 445 (2008).CrossRefGoogle Scholar
30Gibson, L.J. and Ashby, M.F.: Cellular Solids: Structure and Properties (Oxford, Pergamon Press, 1988).Google Scholar
31Lewandowski, J.J., Gu, X.J., Nouri, A.S., Poon, S.J., and Shiflet, G.J.: Tough Fe-based bulk metallic glasses. Appl. Phys. Lett. 92, 091918 (2008).CrossRefGoogle Scholar
32Kumar, G., Ohkubo, T., Mukai, T., and Hono, K.: Plasticity and microstructure of Zr-Cu-Al bulk metallic glasses. Scr. Mater. 57, 173 (2007).CrossRefGoogle Scholar
33Cheng, Y.Q., Cao, A.J., Sheng, H.W., and Ma, E.: Local order influences initiation of plastic flow in metallic glass: Effects of alloy composition and sample cooling history. Acta Mater. 56, 5263 (2008).CrossRefGoogle Scholar
34Lee, J.K., Bae, D.H., Kim, W.T., and Kim, D.H.: Effect of liquid temperature on thermal stability and crystallization behavior of Nibased amorphous alloys. Mater. Sci. Eng., A 375-77, 332 (2004).CrossRefGoogle Scholar
35Fan, C. and Inoue, A.: Effect of liquid states on the crystallization process of nano-crystal forming Zr-Cu-Pd-Al metallic glasses. Appl. Phys. Lett. 75, 3644 (1999).CrossRefGoogle Scholar
36Zhu, Z.W., Zheng, S.J., Zhang, H.F., Ding, B.Z., Hu, Z.Q., Liaw, P.K., Wang, Y.D., and Ren, Y.: Plasticity of bulk metallic glasses improved by controlling the solidification condition. J. Mater. Res. 23, 941 (2008).CrossRefGoogle Scholar
37Mondal, K., Ohkubo, T., Toyama, T., Nagai, Y., Hasegava, M., and Hono, K.: The effect of nanocrystallization and free volume on the room temperature plasticity of Zr-based bulk metallic glasses. Acta Mater. 56, 5329 (2008).CrossRefGoogle Scholar
38Mondal, K., Ohkubo, T., Mukai, T., and Hono, K.: Glass forming ability and mechanical properties of quinary Zr-based bulk metallic glasses. Mater. Trans. 48, 1322 (2007).CrossRefGoogle Scholar
39Ohkubo, T., Nagahama, D., Mukai, T., and Hono, K.: Stress-strain behaviors of Ti-based bulk metallic glass and their nanostructures. J. Mater. Res. 22, 1406 (2007).CrossRefGoogle Scholar
40Bian, Z., He, G., and Chen, G.L.: Microstructure and mechanical properties of as-cast Zr52.5Cu17.9Ni14.6Al10Ti5 bulky glass alloy. Scr. Mater. 43, 1003 (2000).CrossRefGoogle Scholar
41Chen, M., Inoue, A., Zhang, W., and Sakurai, T.: Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett. 96, 245502 (2006).CrossRefGoogle ScholarPubMed
42Hajlaoui, K., Yavari, A.R., Doisneau, B., LeMoulec, A., Botta, W.J.F., Vaughan, G., Greer, A.L., Inoue, A., Zhang, W., and Kvick, A.: Shear delocalization and crack blunting of a metallic glass containing nanoparticles: In situ deformation in TEM analysis. Scr. Mater. 54, 1829 (2006).CrossRefGoogle Scholar
43Inoue, A., Zhang, W., Tsurui, T., Yavari, A.R., and Greer, A.L.: Unusual room-temperature compressive plasticity in nanocrystaltoughened bulk copper-zirconium glass. Philos. Mag. Lett. 85, 221 (2005).CrossRefGoogle Scholar
44Chen, Y.M., Ohkubo, T., Mukai, T., and Hono, K.: Structure of shear bands in Pd40Ni40P20 bulk metallic glass. J. Mater. Res. 24(1), 1 (2009).CrossRefGoogle Scholar