Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-02T21:49:16.339Z Has data issue: false hasContentIssue false

Effect of microcracking on the measured moduli of bulk YBa2Cu3Ox

Published online by Cambridge University Press:  31 January 2011

D. J. Holcomb
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185
M. J. Mayo
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185
Get access

Abstract

Elastic moduli of both as-hot-pressed and oxygenated YBa2Cu3Ox were measured, under isostatic pressures up to 1 GPa, using a combination of strain gage and ultrasonic techniques. Pressurization of the as-hot-pressed samples caused no significant change in moduli; however, pressurization of the oxygenated sample produced a 5-fold increase in bulk modulus. The results show that the significant decreases in moduli between the as-hot-pressed and the oxygenated state were due to extensive microcracking, of an extremely fine nature, that occurred during the oxygenating sequence.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Block, S., Piermarini, G. J., Munro, R. G., and Wong-Ng, W., Adv. Ceram. Mater. 2 (3B), 601 (1987).CrossRefGoogle Scholar
2Fietz, W. H., Dietrich, M. R., and Ecke, J., Z. Phys. 69, 17 (1987).CrossRefGoogle Scholar
3Crabtree, G. W., Downey, J. W., Flandermeyer, B. K., Jorgensen, J. D., Klippert, T. E., Kupperman, D. S., Kwok, W. K., Lam, D. J., Mitchell, A. W., McKale, A. G., Nevitt, M. V., Nowicki, L. J., Paulikas, A. P., Poeppel, R. B., Rothman, S. J., Routbort, J. L., Singh, J. P., Sowers, C. H., Umezawa, A., Veal, B. W., and Baker, J. E., Adv. Ceram. Mater. 2 (3B), 444 (1987).CrossRefGoogle Scholar
4Round, R. and Bridge, B., J. Mater. Sci. Lett. 6, 1471 (1987).CrossRefGoogle Scholar
5Almond, D. P., Lambson, E., Saunders, G. A., and Hong, Wang, J. Phys. F.: Met. Phys. 17, L221224 (1987).CrossRefGoogle Scholar
6Lang, M., Lechner, T., Riegel, S., Steglich, F., Weber, G., Kim, T. J., B. Lüthi, Wolf, B., Rietschel, H., and Wilhelm, M., Z. Phys. B 69, 459 (1988).CrossRefGoogle Scholar
7Loehman, R., Hammetter, W. F., Venturini, E. L., Moore, R. H., and Gerstle, F. P., J. Am. Ceram. Soc. 72, 669 (1989).CrossRefGoogle Scholar
8Nakahara, S., Fisanick, G. J., Yan, M. F., VanPover, R. B., and Boone, T., J. Cryst. Growth 85, 639 (1987).CrossRefGoogle Scholar
9Handbook on Mechanical Properties of Rocks, edited by Lama, R. D. and Vutukuri, V. S. (Trans. Tech. Pub., Clausthal, 1978), pp. 196220.Google Scholar
10Walsh, J. B., J. Geophys. Res. 70, 381389 (1965).CrossRefGoogle Scholar
11O'Connell, R. J. and Budiansky, B., J. Geophys. Res. 79, 54125426 (1974).CrossRefGoogle Scholar
12Knudsen, F. P., J. Am. Ceram. Soc. 45, 94 (1962).CrossRefGoogle Scholar
13Marlowe, M. D. and Wilder, P. R., J. Am. Ceram. Soc. 48, 227 (1965).CrossRefGoogle Scholar
14Jorgensen, J. D., Beno, M. A., Hinks, D. G., Soderholm, L., Volin, K. J., Hitterman, R. L., Grace, J. D., Schuller, I. K., Segre, C. U., Zhang, K., and Kleefisch, M. S., Phys. Rev. B 36, 3608 (1987).CrossRefGoogle Scholar
15Shaw, T. M., Shinde, S. L., Dimos, D., Cook, R. F., Duncombe, P. R., and Kroll, C., J. Mater. Res. 4, 248 (1989).CrossRefGoogle Scholar