Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T08:05:18.145Z Has data issue: false hasContentIssue false

Effect of Nb content on thermal stability, mechanical and corrosion behaviors of hypoeutectic CoCrFeNiNbχ high-entropy alloys

Published online by Cambridge University Press:  08 May 2018

Mengdi Zhang
Affiliation:
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
Lijun Zhang
Affiliation:
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
Peter K. Liaw
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996, USA
Gong Li*
Affiliation:
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; and Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996, USA
Riping Liu
Affiliation:
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
*
a)Address all correspondence to this author. e-mail: gli25@utk.edu, gongli@ysu.edu.cn
Get access

Abstract

A hypoeutectic CoCrFeNiNbχ system was synthesized to investigate the effect of Nb content on the thermal stability, mechanical properties, and corrosion behaviors. The hypoeutectic CoCrFeNiNbχ alloy, which contained the Laves phase, possessed two-phase eutectic structures. The elevated temperature may have an impact on the stability of the Laves phase. Nanoindentation measurements showed that the Laves phase is much harder than the FCC phase, which could be confirmed by the shallower maximum penetration depth in the typical Ph curve. Furthermore, the plasticity of the Laves phase was characterized by nanoindentation measurements. Compared with the FCC phase, the activation energy of dislocation nucleation in the Laves phase is much higher due to the large atomic size difference and the phase difference. Corrosion and passivation behaviors of CoCrFeNiNbχ were investigated in 3.5% NaCl solution. All the alloys exhibited spontaneous passivity and low current densities in 3.5% NaCl solution. Furthermore, the corrosion potential increased with the increasing Nb content, which indicated that the corrosion resistance enhanced with a higher Nb content.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

References

REFERENCES

Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Sun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 5, 299 (2004).CrossRefGoogle Scholar
Zhang, W.R., Liaw, P.K., and Zhang, Y.: Science and technology in high-entropy alloys. Sci. China Mater. 61, 2 (2018).CrossRefGoogle Scholar
Liu, W.H., He, J.Y., Huang, H.L., Wang, H., Lu, Z.P., and Liu, C.T.: Effect of Nb addition on microstructure and mechanical properties of CoCrFeNi high-entropy alloys. Intermetallics 60, 1 (2015).CrossRefGoogle Scholar
Kao, Y.F., Chen, T.J., Chen, S.K., Yeh, J.W., and Tsai, C.W.: Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlχCoCrFeNi (0 ≤ χ ≤ 2) high-entropy alloys. J. Alloys Compd. 488, 57 (2009).CrossRefGoogle Scholar
Hemphill, M.A., Yuan, T., Wang, G.Y., Yeh, J.W., Tsai, C.W., Chuang, A., and Liaw, P.K.: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 5723 (2012).CrossRefGoogle Scholar
Tang, Z., Yuan, T., Tsai, C.W., Jeh, J.W., Lundin, C.D., and Liaw, P.K.: Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Mater. 99, 247 (2015).CrossRefGoogle Scholar
Hsu, C.Y., Juan, C.C., Chen, S.T., Sheu, T.S., Yeh, J.W., and Chen, S.K.: Phase diagrams of high-entropy alloy system Al–Co–Cr–Fe–Mo–Ni. J. Miner. Met. Mater. Soc. 65, 1829 (2013).CrossRefGoogle Scholar
Hsu, C.Y., Yeh, J.W., Chen, S.K., and Shun, T.T.: Wear resistance and high-temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition. Metall. Mater. Trans. A 35, 1465 (2004).CrossRefGoogle Scholar
Zhu, J.M., Zhang, H.F., Fu, H.M., Wang, A.M., Li, H., and Hu, Z.Q.: Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMoχ alloys. J. Alloys Compd. 497, 52 (2010).CrossRefGoogle Scholar
Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., and Liaw, P.K.: Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).CrossRefGoogle Scholar
Santodonato, L.J., Zhang, Y., Feygenson, M., Parish, C.M., Gao, M.C., Weber, R.J., Neuefeind, J.C., Tang, Z., and Liaw, P.K.: Deviation from high-entropy configuration in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 6, 5964 (2015).CrossRefGoogle Scholar
Tong, C-J., Chen, M-R., Yeh, J-W., Lin, S-J., Chen, S-K., Shun, T-T., and Chang, S-Y.: Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 1263 (2005).CrossRefGoogle Scholar
Lu, Y.P., Dong, Y., Guo, S., Jiang, L., Kang, H.J., Wang, T.M., Wen, B., Wang, Z.J., Jie, J.C., Cao, Z.Q., Ruan, H.H., and Li, T.J.: A promising new class of high temperature alloys: Eutectic high-entropy alloys. Sci. Rep. 4, 6200 (2014).CrossRefGoogle ScholarPubMed
Jiang, H., Jiang, L., Qiao, D.X., Lu, Y.P., Wang, T.M., Cao, Z.Q., and Li, T.J.: Effect of niobium on microstructure and properties of the CoCrFeNbxNi high entropy alloys. J. Mater. Sci. Technol. 33, 712 (2017).CrossRefGoogle Scholar
Lu, Y.P., Gao, X.Z., Jiang, L., Chen, Z.N., Wang, T.M., Jie, J.C., Kang, H.J., Zhang, Y.B., Guo, S., Ruan, H.H., Zhao, Y.H., Cao, Z.Q., and Li, T.J.: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 124, 143 (2017).CrossRefGoogle Scholar
Gao, X.Z., Lu, Y.P., Zhang, B., Liang, N.N., Wu, G.Z., Sha, G., Liu, J.Z., and Zha, Y.H.: Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta Mater. 141, 59 (2017).CrossRefGoogle Scholar
Lu, Y.P., Jiang, H., Guo, S., Wang, T.M., Cao, Z.Q., and Li, T.J.: A new strategy to design eutectic high-entropy alloys using mixing enthalpy. Intermetallics 91, 124 (2017).CrossRefGoogle Scholar
Rogal, Ł., Morgiel, J., Świątek, Z., and Czerwiński, F.: Microstructure and mechanical properties of the new Nb25Sc25Ti25Zr25 eutectic high entropy alloy. Mater. Sci. Eng., A 651, 590 (2016).CrossRefGoogle Scholar
He, F., Wang, Z.J., Shang, X.L., Leng, C., Li, J.J., and Wang, J.C.: Stability of lamellar structures in CoCrFeNiNbx eutectic high entropy alloys at elevated temperatures. Mater. Des. 104, 259 (2016).CrossRefGoogle Scholar
He, F., Wang, Z., Cheng, P., Wang, Q., Li, J.J., Dang, Y.Y., Wang, J.C., and Liu, C.T.: Designing eutectic high entropy alloys of CoCrFeNiNbx. J. Alloys Compd. 656, 284 (2016).CrossRefGoogle Scholar
Ma, S.G. and Zhang, Y.: Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater. Sci. Eng., A 532, 480 (2012).CrossRefGoogle Scholar
El-Daly, A.A., Desoky, W.M., Saad, A.F., Mansor, N.A., Lotfy, E.H., Abd-Elmoniem, H.M., and Hashem, H.: The effect of undercooling on the microstructure and tensile properties of hypoeutectic Sn–6.5Zn–xCu Pb-free solders. Mater. Des. 80, 152 (2015).CrossRefGoogle Scholar
Wang, X., Nie, M.Y., Wang, C.T., Wang, S.C., and Gao, N.: Microhardness and corrosion properties of hypoeutectic Al–7Si alloy processed by high-pressure torsion. Mater. Des. 83, 193 (2015).CrossRefGoogle Scholar
Ares, A.E., Gassa, L.M., Schvezov, C.E., and Rosenberger, M.R.: Corrosion and wear resistance of hypoeutectic Zn–Al alloys as a functionof structural features. Mater. Chem. Phys. 136, 394 (2012).CrossRefGoogle Scholar
Osório, W.R., Peixoto, L.C., Canté, M.V., and Garcia, A.: Microstructure features affecting mechanical properties and corrosion behavior of a hypoeutectic Al–Ni alloy. Mater. Des. 31, 4485 (2010).CrossRefGoogle Scholar
Xu, Y.X., Lu, J.T., Yang, X.W., Yan, J.B., and Li, W.Y.: Effect and role of alloyed Nb on the air oxidation behavior of Ni–Cr–Fe alloys at 1000 °C. Corros. Sci. 127, 10 (2017).CrossRefGoogle Scholar
Li, K., Li, Y., Huang, X., Gibson, D., Zheng, Y., Liu, J., Sun, L., and Fu, Y.Q.: Surface microstructures and corrosion resistance of Ni–Ti–Nb shape memory thin films. Appl. Surf. Sci. 414, 63 (2017).CrossRefGoogle Scholar
Lethabane, M.L., Olubambi, P.A., and Chikwanda, H.K.: Corrosion behavior of sintered Ti–Ni–Cu–Nb in 0.9% NaCl environment. J. Mater. Res. Technol. 4, 367 (2015).CrossRefGoogle Scholar
Zhang, L.J., Yu, P.F., Zhang, M.D., Liu, D.J., Ma, M.Z., Liaw, P.K., Li, G., and Liu, R.P.: Microstructure and mechanical behaviors of GdxCoCrCuFeNi high-entropy alloys. Mater. Sci. Eng., A 707, 708 (2017).CrossRefGoogle Scholar
Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
Qvarfort, R.: Critical pitting temperature measurements of stainless steels with an improved electrochemical method. Corros. Sci. 29, 987 (1989).CrossRefGoogle Scholar
Bommersbach, P., Alemany-Dumont, C., Millet, J.P., and Normand, B.: Formation and behavior study of an environment-friendly corrosion inhibitor by electrochemical methods. Electrochim. Acta 51, 1076 (2005).CrossRefGoogle Scholar
Muñoz, A.I., Antón, J.G., Guiñón, J.L., and Herranz, V.P.: Inhibition effect of chromate on the passivation and pitting corrosion of a duplex stainless steel in LiBr solutions using electrochemical techniques. Corros. Sci. 49, 3200 (2007).CrossRefGoogle Scholar
Ebenso, E.E.: Synergistic effect of halide ions on the corrosion inhibition of aluminium in H2SO4 using 2-acetylphenothiazine. Mater. Chem. Phys. 79, 58 (2003).CrossRefGoogle Scholar
Shi, Y.Z., Yang, B., Xie, X., Brechtl, J., Dahmen, K.A., and Liaw, P.K.: Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corros. Sci. 119, 33 (2017).CrossRefGoogle Scholar
Yang, X. and Zhang, Y.: Prediction of high-entropy stabilized solid-solution in multicomponent alloys. Mater. Chem. Phys. 132, 233 (2012).CrossRefGoogle Scholar
Zhang, Y., Zhou, Y.J., Lin, J.P., Chen, G.L., and Liaw, P.K.: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).CrossRefGoogle Scholar
Takeuchi, A. and Inoue, A.: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 (2006).CrossRefGoogle Scholar
Troparevsky, M.C., Morris, J.R., Kent, P.R.C., Lupini, A.R., and Stocks, G.M.: Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 011041 (2015).Google Scholar
Troparevsky, M.C., Morris, J.R., Daene, M., Wang, Y., Lupini, A.R., and Stocks, G.M.: Beyond atomic sizes and Hume-Rothery rules: Understanding and predicting high-entropy alloys. JOM 67, 2350 (2015).CrossRefGoogle Scholar
Dong, Y., Lu, Y.P., Jiang, L., Wang, T.M., and Li, T.J.: Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys. Intermetallics 52, 105 (2014).CrossRefGoogle Scholar
Guo, S., Ng, C., Lu, J., and Liu, C.T.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).CrossRefGoogle Scholar
Tsai, M-H., Tsai, K-Y., Tsai, C-W., Lee, C., Juan, C-C., and Yeh, J-W.: Criterion for sigma phase formation in Cr- and V containing high-entropy alloys. Mater. Res. Lett. 1, 207 (2013).CrossRefGoogle Scholar
Catoor, D., Gao, Y.F., Geng, J., Prasad, M.J.N.V., Herbert, E.G., Kumar, K.S., Pharr, G.M., and George, E.P.: Incipient plasticity and deformation mechanisms in single-crystal Mg during spherical nanoindentation. Acta Mater. 61, 2953 (2013).CrossRefGoogle Scholar
Wang, L., Bei, H., Li, T.L., Gao, Y.F., George, E.P., and Nieh, T.G.: Determining the activation energies and slip systems for dislocation nucleation in body-centered cubic Mo and face-centered cubic Ni single crystals. Scr. Mater. 65, 179 (2011).CrossRefGoogle Scholar
Ye, Y.X., Lu, Z.P., and Nieh, T.G.: Dislocation nucleation during nanoindentation in a body-centered cubic TiZrHfNb high-entropy alloy. Scr. Mater. 130, 64 (2017).CrossRefGoogle Scholar
Senkov, O.N., Senkova, S.V., Miracle, D.B., and Woodward, C.: Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Mater. Sci. Eng., A 565, 51 (2013).CrossRefGoogle Scholar
Stepanov, N.D., Yurchenko, N.Y., Skibin, D.V., Tikhonovsky, M.A., and Salishchev, G.A.: Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys. J. Alloys Compd. 652, 266 (2015).CrossRefGoogle Scholar
Shun, T.T., Chang, L.Y., and Shiu, M.H.: Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys. Mater. Sci. Eng., A 556, 170 (2012).CrossRefGoogle Scholar