Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-05T02:47:13.933Z Has data issue: false hasContentIssue false

Effect of oxygen on the formation of end-of-range disorder in implantation amorphized silicon

Published online by Cambridge University Press:  31 January 2011

E. Lorenz
Affiliation:
Fraunhofer-Arbeitsgruppe für Integrierte Schaltungen, Artilleriestr 12, W-8520 Erlangen, Germany
J. Gyulai
Affiliation:
Fraunhofer-Arbeitsgruppe für Integrierte Schaltungen, Artilleriestr 12, W-8520 Erlangen, Germany
L. Frey
Affiliation:
Fraunhofer-Arbeitsgruppe für Integrierte Schaltungen, Artilleriestr 12, W-8520 Erlangen, Germany
H. Ryssel
Affiliation:
Fraunhofer-Arbeitsgruppe für Integrierte Schaltungen, Artilleriestr 12, W-8520 Erlangen, Germany
N.Q. Khanh
Affiliation:
Joint Institute for Experimental Physics of the Technical University of Budapest and of the Central Research Institute of Physics, H-1525 Budapest, P. O. Box 49, Hungary
Get access

Abstract

Formation of End-of-Range (EOR) disorder was studied in (100)-oriented silicon, when subjected to amorphization by implantation of Ge+ ions, followed by a 10 s Rapid Thermal Annealing (RTA) at 1050 °C. XTEM, RBS/channeling, and SIMS were used to analyze Czochralski grown (CZ) silicon wafers with oxygen concentrations of 6.5, 7.0, and 8.0 × 1017/cm3 and Float Zone (FZ) silicon, as “low oxygen” wafers. Amorphization on neighboring parts of the 4″ wafers was made either by 60 keV Ge+ implantation or by 110 keV Ge+ implantation and by sequential (60 keV + 110 keV) Ge+ implantation. Parts of each wafer were additionally implanted with 13 keV boron. In FZ silicon, no defects were found for 60 keV Ge+ implantation and RTA at 1050 °C. For 110 keV Ge+ and sequential (60 keV + 110 keV) Ge+ implantation in FZ-silicon the majority of the samples showed perfect annealing. Two wafers, however, subjected to sequential implantation still contained defects but with a defect density that was one order of magnitude lower than for CZ wafers. For one of them, not even a continuous layer of defects was formed. In contrast, CZ wafers contained defect bands, except for the 60 keV Ge+ implantation [in accord with the findings of Ozturk et al., IEEE Trans. on Electronic Dev. 35, 659 (1988)]. The presence of boron had no visible effect on the defect structure.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See, e. g., Fair, R. B., Nucl. Instrum. Methods B37/38, 371 (1989).CrossRefGoogle Scholar
2.Csepregi, L., Kennedy, E. F., Gallagher, T. J., Mayer, J.W., and Sigmon, T. W., J. Appl. Phys. 48, 4234 (1977).CrossRefGoogle Scholar
3.Müller, H., Ryssel, H., and Ruge, I., in Ion Implantation in Semiconductors, edited by Ruge, I and Graul, J (Springer, Berlin-New York, 1971), p. 85.Google Scholar
4.Seidel, T. E., Lischner, D. J., Pai, C.S., Knoell, R. V., Maher, D. H., and Jacobson, D. C., Nucl. Instrum. Methods B7/8, 251 (1985).CrossRefGoogle Scholar
5.Ozguz, V. H., Wortman, J. J., Hauser, J. R., Simpson, L. L., Littlejohn, M. A., Chu, W-K., and Rozgonyi, G. A., Appl. Phys. Lett. 45, 1225 (1984).CrossRefGoogle Scholar
6.Sedgwick, T. O., Nucl. Instrum. Methods B37/38, 760 (1989).CrossRefGoogle Scholar
7.Ganin, E., Scilla, G., Sedgwick, T. O., and Sai-Halasz, G. A., in Beam-Solid Interactions and Transient Processes, edited by Thompson, M. O., Picraux, S. T., and Williams, J. S. (Mater. Res. Soc. Symp. Proc. 74, Pittsburgh, PA, 1987), p. 717.Google Scholar
8.Lin, C-M., Steckl, A. J., and Chow, T. P., Appl. Phys. Lett. 54, 1790 (1989).CrossRefGoogle Scholar
9.Ozturk, M. C., Wortman, J. J., Osburn, C.M., Ajmera, A., Rozgonyi, G. A., Frey, E., Chu, W-K., and Lee, C., IEEE Trans. Electron. Dev. 35, 659 (1986).CrossRefGoogle Scholar
10.Fair, R. B. and Ruggles, G. A., Solid State Technol., 107 (May 1990).Google Scholar
11.Ajmera, A. C. and Rozgonyi, G. A., Appl. Phys. Lett. 49, 1269 (1986).CrossRefGoogle Scholar
12.Maher, D. M., Knoell, R. V., Ellington, M. B., and Jacobson, D. C., in Rapid Thermal Processing, edited by Sedgwick, T. O., Seidel, T. E., and Tsaur, B-Y. (Mater. Res. Soc. Symp. Proc. 52, Pitts-burgh, PA, 1986), p. 93.Google Scholar
13.Servidori, M., Angelucci, R., Cembali, F., Negrini, P., Solmi, S., Zaumseil, P., and Winter, U., J. Appl. Phys. 61, 1834 (1987).CrossRefGoogle Scholar
14.Pichler, P., Barthel, A., Dürr, R., Holzer, N., Lorenz, J., Ryssel, H., and Schott, K., Nasecode VI (Boole Press, Dublin, 1989), p. 173.Google Scholar