Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T03:11:41.244Z Has data issue: false hasContentIssue false

Effect of poly(acrylic acid) and poly(vinyl alcohol) on the solubility of colloidal BaTiO3 in an aqueous medium

Published online by Cambridge University Press:  31 January 2011

Ungyu Paik
Affiliation:
Department of Ceramic Engineering, Hanyang University, Seoul 133-791, Korea
Vincent A. Hackley
Affiliation:
Materials Science & Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8520
Jaeho Lee
Affiliation:
Department of Ceramic Engineering, Hanyang University, Seoul 133-791, Korea
Sangkyu Lee
Affiliation:
Department of Ceramic Engineering, Hanyang University, Seoul 133-791, Korea
Get access

Abstract

The influence of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA) on Ba dissolution from the BaTiO3-aqueous solution interface was investigated. Incongruent dissolution of Ba impacts the colloidal stability, microstructure, and electrical properties of BaTiO3 and related perovskite dielectric materials used in the manufacture of ceramic capacitors. The solubility characteristics of BaTiO3 were influenced significantly by the presence of PAA and PVA. PAA, which forms weak monodentate complexes with Ba2+, acted as both a passivating and a sequestering agent, depending on pH. Both PAA and PVA provided some degree of passivation in the acidic pH region. Above pH 8, where BaTiO3 solubility decreases sharply, PVA had a moderate passivating effect, whereas solubility was enhanced by PAA with a positive linear dependence on concentration. The adsorptive and electrokinetic behavior of colloidal BaTiO3 with respect to PAA and PVA are correlated with the observed passivating and sequestering properties of these polymers.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chu, M.S.H. and Rae, A.W.I.M., Am. Ceram. Soc. Bull. 74, 69 (1995).Google Scholar
2.Randall, C.A., J. Ceram. Soc. Jpn. 109, S2 (2001).CrossRefGoogle Scholar
3.Yoon, D.H. and Lee, B.I., J. Ceram. Process. Res. 3, 41 (2002).Google Scholar
4.Hyatt, T.P., Am. Ceram. Soc. Bull. 74, 56 (1995).Google Scholar
5.Anderson, D.A., Adair, J.H., Miller, D., Biggers, J.V., and Shrout, T.R., in Ceramic Powder Science II, Ceramic Transactions, edited by Messing, G.L., Fuller, E.R., Jr., and Hausner, H. (American Ceramic Society, Westerville, OH, 1988), Vol. 1, pp. 485492.Google Scholar
6.Blanco-Lopez, M.C., Rand, B., and Riley, F.L., J. Euro. Ceram. Soc. 17, 281 (1997).CrossRefGoogle Scholar
7.Venigalla, S. and Adair, J.H., Chem. Mater. 11, 589 (1999).Google Scholar
8.Wang, X.Y., Lu, S.W., Lee, B.I., and Mann, L.A., Mater. Res. Bull. 35, 2555 (2000).Google Scholar
9.Völtzke, D., Abicht, H-P., Woltersdorf, J., and Pippel, E., Mater. Chem. Phys. 73, 274 (2002).CrossRefGoogle Scholar
10.Paik, U. and Hackley, V.A., J. Am. Ceram. Soc. 83, 2381 (2000).CrossRefGoogle Scholar
11.Paik, U., Lee, S., and Hackley, V.A., J. Am. Ceram. Soc. (submitted for publication).Google Scholar
12.Abel, J.S., Stangle, G.C., Schilling, C.H., and Aksay, I.A., J. Mater. Res. 9, 451 (1994).Google Scholar
13.Venigalla, S., Clancy, D.J., Miller, D.V., Kerchner, J.A., and Costantino, S.A., Am. Ceram. Soc. Bull. 78, 51 (1999).Google Scholar
14.Lee, J., Hong, K., and Jang, J., J. Am. Ceram. Soc. 84, 2001 (2001).CrossRefGoogle Scholar
15.Hérard, C., Raivre, A., and Lemâtre, J., J. Eur. Ceram. Soc. 15, 145 (1995).CrossRefGoogle Scholar
16.Carbone, T.J. and Reed, J.S., Ceram. Bull. 58, 512 (1979).Google Scholar
17.Lee, S., Lee, J., Hackley, V.A., and Paik, U., J. Am. Ceram. Soc. (submitted for publication).Google Scholar
18.Chen, Z., Ring, T.A., and Lemâtre, J., J. Am. Ceram. Soc. 75, 3201 (1992).CrossRefGoogle Scholar
19.Laat, A.W.M. de and Heuvel, G.L.T. van den, Colloids Surf. A 70, 179 (1993).CrossRefGoogle Scholar
20.Laat, A.W.M. de, Heuvel, G.L.T. van den, and Böhmer, M.R., Colloids Surf. A 98, 61 (1995).Google Scholar
21.Jean, J. and Wang, H., J. Am. Ceram. Soc. 81, 1589 (1998).Google Scholar
22.Bagwell, R.B., Sindel, J., and Sigmund, W., J. Mater. Res. 14, 1844 (1999).Google Scholar
23.Lee, B.I., J. Electroceram. 3, 53 (1999).CrossRefGoogle Scholar
24.Blanco-Lopez, M.C., Rand, B., and Riley, F.L., J. Eur. Ceram. Soc. 20, 1579 (2000).Google Scholar
25.Blanco-Lopez, M.C., Rand, B., and Riley, F.L., J. Eur. Ceram. Soc. 20, 1587 (2000).CrossRefGoogle Scholar
26.Jean, J. and Wang, H., J. Am. Ceram. Soc. 83, 277 (2000).CrossRefGoogle Scholar
27.Grohe, B., Miche, G., and Wegner, G., J. Mater. Res. 16, 1911 (2001).Google Scholar
28.Wang, X.W., Lee, B.I., and Mann, L., Colloids Surf. A 202, 71 (2002).Google Scholar
29.Bell, N.S., Sindel, J., Aldinger, F., and Sigmund, W.M., J. Colloid Interface Sci. 254, 296 (2002).Google Scholar
30.Li, C.C. and Jean, J.H., J. Am. Ceram. Soc. 85, 1441 (2002).CrossRefGoogle Scholar
31.Li, C.C. and Jean, J.H., J. Am. Ceram. Soc. 85, 1449 (2002).Google Scholar
32.Laat, A.W.M. de and Derks, W.P.T., Colloids Surf. A 71, 147 (1993).CrossRefGoogle Scholar
33.Paik, U., Hackley, V.A., and Lee, H., J. Am. Ceram. Soc. 82, 833 (1999).Google Scholar
34.Hackley, V.A. and Paik, U., in Ultrasonic and Dielectric Characterization Techniques for Suspended Particulates, edited by Hackley, V.A. and Texter, J. (American Ceramic Society, Westerville, OH, 1998), p. 191.Google Scholar
35.Hackley, V.A., Paik, U., Kim, B., and Malghan, S., J. Am. Ceram. Soc. 80, 1781 (1997).CrossRefGoogle Scholar
36.Hackley, V.A., J. Am. Ceram. Soc. 80, 2315 (1997).CrossRefGoogle Scholar
37.Mathieson, A.R. and Mc, J.V.Laren, J. Polym. Sci., Part A: Polym. Chem. 3, 2555 (1965).Google Scholar
38.Somasundaran, P. and Kunjappu, J.T., Colloids Surf. 37, 245 (1989).Google Scholar
39.Porasso, R.D., Benegas, J.C., and Hoop, M.A.G.T. van den, J. Phys. Chem. B 103, 2361 (1999).Google Scholar
40.Miyajima, T., in Physical Chemistry of Polyelectrolytes, Surfactant Science Series Vol. 99, edited by Radeva, T. (Marcel Dekker, New York, 2001), p. 829.Google Scholar
41.Foissy, A., Attar, A.E., and Lamarche, J.M., J. Colloid Interface Sci. 96, 275 (1983).Google Scholar
42.Hegetschweiler, K., Chem. Soc. Rev. 28, 239 (1999).CrossRefGoogle Scholar
43.Hair, M.L. and Hertl, W., J. Phys. Chem. 73, 4269 (1969).CrossRefGoogle Scholar
44.Tadros, Th.F., J. Colloid Interface Sci. 64, 36 (1978).Google Scholar
45.Lyklema, J., Fundamentals of Interface and Colloid Science Vol. 11: Solid-Liquid Interfaces (Academic Press, New York, 1995), Chap. 3, p. 64.Google Scholar
46.Böhmer, M.R., Evers, O.A., and Scheutjens, J.M.H.M., Macromolecules 23, 2288 (1990).Google Scholar
47.Misra, D.N. and Bowen, R.L., J. Colloid Interface Sci. 61, 14 (1977).Google Scholar
48.Juriaanse, A.C., Arends, J., and Bosch, J.J. Ten, J. Colloid Interface Sci. 76, 220 (1980).Google Scholar
49.Skinner, J.C., Prosser, H.J., Scott, R.P., and Wilson, A.D., Biomaterials 7, 438 (1986).Google Scholar
50.Misra, D.N., J. Dent. Res. 71, 1418 (1993).CrossRefGoogle Scholar
51.Amjad, Z., in Calcium Phosphates in Biological and Industrial Systems, edited by Amjad, Z. (Kluwer Academic Publishers, Boston, MA, 1997), p. 371.Google Scholar