Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T01:08:44.768Z Has data issue: false hasContentIssue false

Effect of precipitation temperature and organic additives on size and morphology of ZnO nanoparticles

Published online by Cambridge University Press:  13 March 2012

Özlem Altıntaş Yıldırım
Affiliation:
Department of Metallurgical and Materials Engineering, Middle East Technical University, 06531 Ankara, Turkey
Caner Durucan*
Affiliation:
Department of Metallurgical and Materials Engineering, Middle East Technical University, 06531 Ankara, Turkey
*
a)Address all correspondence to this author. e-mail: cdurucan@metu.edu.tr
Get access

Abstract

Low temperature (25 °C–80 °C) synthesis of zinc oxide (ZnO) nanoparticles (<20 nm) at short synthesis periods (∼30 min) was achieved by precipitation. The precipitation system was formed using zinc acetate dihydrate as zinc source, ethylene glycol (EG) as solvent and polyvinyl pyrrolidone (PVP) as chelating agent. The size of spherical ZnO nanoparticles was manipulated by the choice of precipitation temperature (13.0 ± 1.9 nm at 25 °C and 9.0 ± 1.3 nm at 80 °C), which essentially changes the nature of adsorption events between ZnO crystals and organic molecules. The particle size can also be regulated by the amount of chelating agent as a result of further enhancement in adsorption between ZnO crystals and organic additives. The spherical ZnO nanoparticles were agglomerated into triangular form when different solvent was used – by substituting water for EG, which has different adsorption ability. Accordingly, formation and growth mechanisms controlling the size and morphology of ZnO nanoparticles have been proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gupta, T.K.: Application of zinc oxide varistors. J. Am. Ceram. Soc. 73, 1817 (1990).CrossRefGoogle Scholar
2.Singhai, M., Chhabra, V., Kang, P., and Shah, D.O.: Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol of microemulsion. Mater. Res. Bull. 32, 239 (1997).CrossRefGoogle Scholar
3.Gao, T. and Wang, T.H.: Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications. Appl. Phys. A 80, 1451 (2005).CrossRefGoogle Scholar
4.Liao, L., Lu, H.B., Li, J.C., He, H., Wang, D.F., Fu, D.J., Liu, C., and Zhang, W.F.: Size dependence of gas sensitivity of ZnO nanorods. J. Phys. Chem. C 111, 1900 (2007).CrossRefGoogle Scholar
5.Li, Y.B., Bando, Y., and Golberg, D.: ZnO nanoneedles with tip surface perturbations: Excellent field emitters. Appl. Phys. Lett. 84, 3603 (2004).CrossRefGoogle Scholar
6.Cheng, C-L., Chao, S-H., and Chen, Y-F.: Enhancement of field emission in nanotip-decorated ZnO nanobottles. J. Cryst. Growth 311, 4381 (2009).CrossRefGoogle Scholar
7.Ramamoorthy, K., Sanjeeviraja, C., Jayachandran, M., Sankaranarayanan, K., Bhattacharya, P., and Kukreja, L.M.: Preparation and characterization of ZnO thin films on InP by laser-molecular beam epitaxy technique for solar cells. J. Cryst. Growth 226, 281 (2001).CrossRefGoogle Scholar
8.Choopun, S., Tubtimtae, A., Santhaveesuk, T., Nilphai, S., Wongrat, E., and Hongsith, N.: Zinc oxide nanostructures for applications as ethanol sensors and dye-sensitized solar cells. Appl. Surf. Sci. 256, 998 (2009).CrossRefGoogle Scholar
9.Liu, B. and Zeng, H.C.: Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 125, 4430 (2003).CrossRefGoogle ScholarPubMed
10.Pal, U. and Santiago, P.: Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process. J. Phys. Chem. B 109, 15317 (2005).CrossRefGoogle Scholar
11.Ayouchi, R., Martin, F., Leinen, D., and Ramos-Barrado, J.R.: Growth of pure ZnO thin films prepared by chemical spray pyrolysis on silicon. J. Cryst. Growth 247, 497 (2003).CrossRefGoogle Scholar
12.Htay, M.T., Hashimoto, Y., Momose, N., and Ito, K.: Position-selective growth of ZnO nanowires by ultrasonic spray pyrolysis. J. Cryst. Growth 311, 4499 (2009).CrossRefGoogle Scholar
13.Ristic, M., Music, S., Ivanda, M., and Popovic, S.: Sol-gel synthesis and characterization of nanocrystalline ZnO powders. J. Alloys Compd. 397, L1 (2005).CrossRefGoogle Scholar
14.Li, J., Srinivasan, S., He, G.N., Kang, J.Y., Wu, S.T., and Ponce, F.A.: Synthesis and luminescence properties of ZnO nanostructures produced by the sol-gel method. J. Cryst. Growth 310, 599 (2008).CrossRefGoogle Scholar
15.Ahmad, T., Vaidya, S., Sarkar, N., Ghosh, S., and Ganguli, A.K.: Zinc oxalate nanorods: A convenient precursor to uniform nanoparticles of ZnO. Nanotechnology 17, 1236 (2006).CrossRefGoogle Scholar
16.Yildirim, O.A. and Durucan, C.: Synthesis of zinc oxide nanoparticles elaborated by microemulsion method. J. Alloys Compd. 506, 944 (2010).CrossRefGoogle Scholar
17.Tao, D., Qian, W., Huang, Y., and Wei, F.: A novel low-temperature method to grow single-crystal ZnO nanorods. J. Cryst. Growth 271, 353 (2004).CrossRefGoogle Scholar
18.Wang, J. and Gao, L.: Wet chemical synthesis of ultra long and straight single-crystalline ZnO nanowires and their excellent UV emission properties. J. Mater. Chem. 13, 2551 (2003).CrossRefGoogle Scholar
19.Wang, C., Shen, E., Wang, E., Gao, L., Kang, Z., Tian, C., Lan, Y., and Zhang, C.: Controllable synthesis of ZnO nanocrystals via a surfactant-assisted alcohol thermal process at a low temperature. Mater. Lett. 59, 2867 (2005).CrossRefGoogle Scholar
20.Xie, R., Li, D., Zhang, H., Yang, D., Jiang, M., Sekiguchi, T., Liu, B., and Bando, Y.: Low-temperature growth of uniform ZnO particles with controllable ellipsoidal morphologies and characteristic luminescence patterns. J. Phys. Chem. B 110, 19147 (2006).CrossRefGoogle ScholarPubMed
21.Sui, X., Liu, Y., Shao, C., Liu, Y., and Xu, C.: Structural and photoluminescent properties of ZnO hexagonal nanoprisms synthesized by microemulsion with polyvinyl pyrrolidone served as surfactant and passivant. Chem. Phys. Lett. 424, 340 (2006).CrossRefGoogle Scholar
22.Drelinkiewicz, A., Hasik, M., Quillard, S., and Paluszkiewicz, C.: Infrared and Raman studies of palladium-nitrogen-containing polymers interactions. J. Mol. Struct. 511512, 205 (1999).CrossRefGoogle Scholar
23.Silva, R.F. and Zaniquelli, M.E.: Morphology of nanometric size particulate aluminum-doped zinc oxide films. Colloids Surf., A 198200, 551 (2002).CrossRefGoogle Scholar
24.Wahab, R., Kim, Y-S., Lee, K., and Shin, H-S.: Fabrication and growth mechanism of hexagonal zinc oxide nanorods via solution process. J. Mater. Sci. 45, 2967 (2010).CrossRefGoogle Scholar
25.Studenikin, S.A., Golego, N., and Cocivera, M.: Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J. Appl. Phys. 84, 2287 (1998).CrossRefGoogle Scholar
26.Yang, C.L., Wang, J.N., Ge, W.K., Guo, L., Yang, S.H., and Shen, D.Z.: Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots. J. Appl. Phys. 90, 4489 (2001).CrossRefGoogle Scholar
27.Gao, P.X. and Wang, Z.L.: Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process. J. Phys. Chem. B 108, 7534 (2004).CrossRefGoogle Scholar
28.Wang, Z.L.: Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Matter 16, R829 (2004).CrossRefGoogle Scholar
29.Zhang, L. and Zhu, Y.J.: ZnO micro- and nanostructures: Microwave-assisted solvothermal synthesis, morphology control and photocatalytic properties. Appl. Phys. A 97, 847 (2009).CrossRefGoogle Scholar
30.Rashid, M.H., Raula, M., Bhattacharjee, R.R., and Mandal, T.K.: Low-temperature polymer-assisted synthesis of shape-tunable zinc oxide nanostructures dispersible in both aqueous and nonaqueous media. J. Colloid Interface Sci. 339, 249 (2009)CrossRefGoogle Scholar
31.Ghoshal, T., Kar, S., and Chaudhuri, S.: ZnO Doughnuts: Controlled synthesis, growth mechanism and optical properties. Cryst. Growth Des. 7, 136 (2006).CrossRefGoogle Scholar
32.Wei, S.F., Lian, J.S., and Jiang, Q.: Controlling growth of ZnO rods by polyvinylpyrrolidone (PVP) and their optical properties. Appl. Surf. Sci. 255, 6978 (2009).CrossRefGoogle Scholar
33.Zhang, J., Liu, H., Wang, Z., and Ming, N.: Low-temperature growth of ZnO with controllable shapes and band gaps. J. Cryst. Growth 310, 2848 (2008).CrossRefGoogle Scholar
34.Pacholski, C., Kornowski, A., and Weller, H.: Self-assembly of ZnO: From nanodots to nanorods. Angew. Chem. Int. Ed. 41, 1188 (2002).3.0.CO;2-5>CrossRefGoogle ScholarPubMed
35.Yao, C.W., Wu, H.P., Ge, M.Y., Yang, L., Zeng, Y.W., Wang, Y.W., and Jiang, J.Z.: Triangle-shape ZnO prepared by thermal decomposition. Mater. Lett. 61, 3416 (2007).CrossRefGoogle Scholar
36.Muta, H., Ishida, K., Tamaki, E., and Satoh, M.: An IR study on ion-specific and solvent-specific swelling of poly (N-vinyl-2-pyrrolidone) gel. Polymer 43, 103 (2002).CrossRefGoogle Scholar
37.Bai, J., Li, Y., Zhang, C., Liang, X., and Yang, Q.: Preparing AgBr nanoparticles in poly (vinyl pyrrolidone) (PVP) nanofibers. Colloids Surf., A 329, 165 (2008).CrossRefGoogle Scholar
38.Zhang, Z., Shao, C., Gao, F., Li, X., and Liu, Y.: Enhanced ultraviolet emission from highly dispersed ZnO quantum dots, embedded in poly (vinyl pyrrolidone) electrospun nanofibers. J. Colloid Interface Sci. 347, 215 (2010).CrossRefGoogle ScholarPubMed
39.Wahab, R., Ansari, S.G., Kim, Y.S., Seo, H.K., Kim, G.S., Khang, G., and Shin, H-S.: Low temperature solution synthesis and characterization of ZnO nanoflowers. Mater. Res. Bull. 42, 1640 (2007).CrossRefGoogle Scholar
40.Haase, M., Weller, H., and Henglein, A.: Photochemistry and radiation chemistry of colloidal semiconductors. 23. Electron storage on zinc oxide particles and size quantization. J. Phys. Chem. 92, 482 (1988).CrossRefGoogle Scholar
41.Singla, M.L., Shafeeq, M., and Kumar, M.M.: Optical characterization of ZnO nanoparticles capped with various surfactants J. Lumin. 129, 434 (2009).CrossRefGoogle Scholar
42.Willander, M., Nur, O., Sadaf, J.R., Qadir, M.I., Zaman, S., Zainelabdin, A., Bano, N., and Hussain, I.: Luminescence from zinc oxide nanostructures and polymers and their hybrid devices. Materials 3, 2643 (2010).CrossRefGoogle Scholar
43.Kang, H.S., Kang, J.S., Kim, J.W., and Lee, S.Y.: Annealing effect on the property of ultraviolet and green emissions of ZnO thin films. J. Appl. Phys. 95, 1246 (2004).CrossRefGoogle Scholar
44.Liu, M., Kitai, A.H., and Mascher, P.: Point defects and luminescence-centers in zinc oxide and zinc oxide doped with manganese. J. Lumin. 54, 35 (1992).CrossRefGoogle Scholar